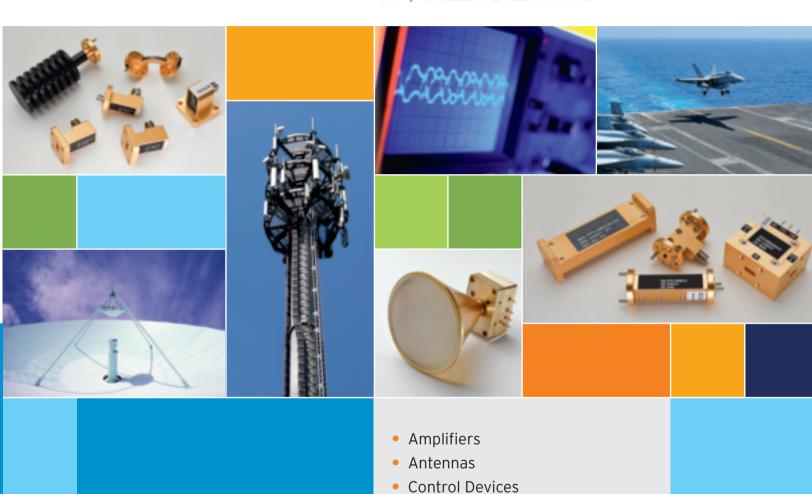


Millimeter Wave Catalog

RF / MILLIMETERWAVE

Doppler Transceivers


Frequency Converters

Passive ComponentsRanging Transceivers

Ferrite Devices

Oscillators

Subsystems

About Ducommun

Founded in 1849, Ducommun Incorporated is a global provider of manufacturing and engineering solutions for customers in the defense, aerospace and industrial markets. The company draws on its broad-based capabilities to develop innovative electronic, engineered and structural solutions to meet customers' complex requirements. Ducommun's capabilities are organized into nine strategic business units, each focused on a distinct area of expertise: Circuit Board Solutions, Interconnect Solutions, Aerospace Integrated Solutions, Industrial Integrated Solutions, Systems Development and Integration, Engineered Solutions, Structural Assembly Solutions, Structural Systems Solutions, and Bonded Component Solutions. Customers have access to the company's full spectrum of capabilities through common, companywide processes that create value for the customer and facilitate ease of doing business. Ducommun operates with a one-team approach called the Ducommun Way, which drives the company's vision, core values, operating performance, and customer satisfaction through a combined focus on operational excellence, organizational development and profitable growth. The company employs 3,300 talented individuals at 21 operations in the USA and abroad.

In 2006, Ducommun acquired Torrance, California-based WiseWave Technologies, Inc. WiseWave is a manufacturer of custom microwave and millimeterwave products for both aerospace and non-aerospace applications.

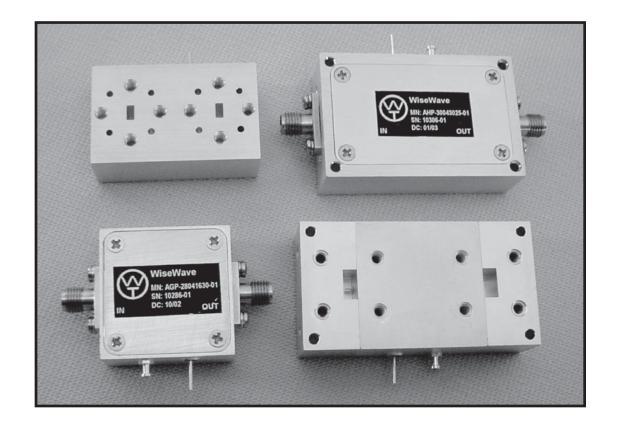
The integration of WiseWave broadened Ducommun's existing microwave product line, added millimeterwave products, and continued WiseWave's commitment to providing customers with well-engineered, high-quality, and cost-effective microwave and millimeterwave components and sub-assemblies up to 140 GHz.

This catalog of millimeterwave products is divided into eight categories to offer total microwave and millimeterwave solutions: amplifiers, antennas, control devices, ferrite devices, frequency converters, oscillators, passive components, and sub-assemblies. Ducommun also designs to customers' specifications, or assists customers in developing their own products for their unique applications.

Ducommun maintains a strong commitment to quality and has established processes that ensure customer requirements and specifications are met and exceeded. Ducommun's customer list includes industry leaders, research institutions, government agencies, and universities.

Table of Contents

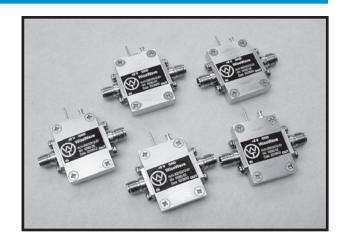
1. Amplifiers	1
Low Noise Amplifiers	2
High Power Amplifiers	3
General Purpose Amplifiers	4
Amplifier Outline Drawings #1	
Amplifier Outline Drawings #2	
2. Antennas	
Circular and Rectangular Horn Antennas	
Lens Corrected Antennas	
GPS Antenna	
Custom Built Antennas	
Antenna Outline Drawings	
3. Control Devices	
PIN Diode Switches	14
77 GHz SP4T and SP10T PIN Switches	
SP4T & SP10T Series Outline Drawings	
Electrical Attenuators	
Fixed and Level Setting Attenuators	
Variable Phase Shifters	
Direct Reading Attenuators	
Control Device Outline Drawings #1	
Control Device Outline Drawings #2	
4. Frequency Converters	23
Broadband Waveguide Detectors	
I/Q Mixers or Phase Detectors	
Active Frequency Multipliers	
Passive Frequency Multipliers	27
Harmonic Mixers	
Balanced Mixers	
Externally Biased Balanced Mixers	30
Balanced Up-converters	31
Subharmonically Pumped Mixers	
Subharmonically Pumped Up-converters	33
Single Sideband Modulators	34
Frequency Converter Outline Drawings #1	
Frequency Converter Outline Drawings #2	
5. Oscillators	
Dielectric Resonator Oscillators	
Low Cost K and Ka Band Gunn Diode Oscillators	
Bias Tuned Gunn Diode Oscillators	
Mechanically Tuned Gunn Diode Oscillators	
Full Band Mechanically Tuned Gunn Oscillators	
Varactor Tuned Gunn Diode Oscillators	
Millimeterwave Solid State Noise Sources	
Outline DrawingGunn Oscillator Bias Regulators and Modulators	
Injection Locked Gunn Diode Oscillators	
Phase Locked Oscillators	
Oscillator Outline Drawings #1	
Oscillator Outline Drawings #1	


6. Ferrite Devices	
Drop-in Ferrite Isolators and Circulators	
Connectorized Ferrite Isolators and Circulators	.55
Iso-adapters	
Narrow Band Ferrite Junction Isolators/Circulators	. 57
Full Band Junction Circulators and Isolators	. 58
Full Band Faraday Isolators	
Ferrite Device Outline Drawings	
9	
7. Passive Components	
Multi-Hole Directional Couplers	
Crossguide Directional Couplers	
Matched Hybrid Tees (Magic Tees)	
Coax Power Dividers	. 65
Waveguide Bandpass Filters	. 66
Waveguide Low Pass Filters	. 67
Waveguide Highpass Filters	.68
Waveguide Diplexers	.69
Waveguide Transitions	
Waveguide Flange and Bulkhead Adapters	.71
Waveguide to Coax Adapters	
Waveguide Sections, Bends, Twists and Loads	73
Waveguide Jack	
Passive Component Outline Drawings #1	
Passive Component Outline Drawings #1	
8. Subsystems	. 79
Motion Detector Modules	. 80
Doppler Sensor Heads	
Doppler Sensor Heads	.82
Ranging Sensor Heads	.83
Ranging Sensor Heads	.84
Sensor Heads Application Notes	. 85
Doppler Ranging Sensor Heads	
Doppler Ranging Sensor Heads	
Doppler Ranging Sensor Heads Outline Drawings	90
Radar Target Simulators	
Frequency Extenders	
Scalar Network Analyzer Extenders	
Noise Figure and Gain Test Set	
Sub-assemblies	
9. Technical Reference	
Rectangular Waveguide and Flange Designations	
Circular Waveguide and Flange Designations	.99
Coax Connectors	00
	. 99
mW and dBm	
mW and dBm Model Number Index	100

Terms and Conditions of Sale can be found at www.ducommun.com

1. Amplifiers

Low Noise Amplifiers (ALN)	1-2
High Power Amplifiers (AHP)	1-3
General Purpose Amplifiers (AGP)	1-4
Amplifier Outline Drawings #1	1-5
Amplifier Outline Drawings #2	1-6


Bulletin No. ALN

FEATURES

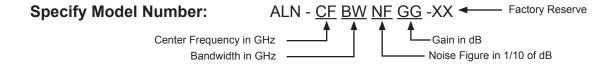
- Low noise figure
- Up to full waveguide bandwidth
- Single power supply
- Compact size, light weight
- Wide operation temperature range

APPLICATIONS

- Communication receivers
- Radar front ends
- Wideband radiometry
- Transceiver sub-assemblies

ALN Series

DESCRIPTION


ALN series low noise amplifiers are constructed with discrete or MMIC PHEMT devices that operate at the frequency range from 18 to 100 GHz. These amplifiers are especially designed for low noise applications. The amplifiers are offered in two categories, namely, standard and custom built. The custom built amplifiers are offered in various RF interfaces, including standard waveguide or coax connectors, for convenient system integration. The optional input and output integrated isolators are available to further improve the port return loss.

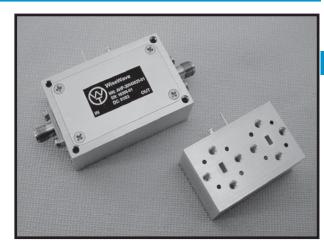
STANDARD AMPLIFIER SPECIFICATIONS

Model Number	Freq. (GHz)	BW (GHz)	NF (dB, Max)	Gain (dB)	V/I (V / mA)	VSWR (Typ)	Outline
ALN-22093515-01	18.0 - 26.5	8.5	3.5	15	8/100	2:1	WT-A-1, 3
ALN-22093530-01	18.0 - 26.5	8.5	3.5	30	8/200	2:1	WT-A-1, 3
ALN-33144020-01	26.5 - 40.0	13.5	4.5	20	8/100	2:1	WT-A-1, 3
ALN-33144030-01	26.5 - 40.0	13.5	4.5	30	8/200	2:1	WT-A-1, 3
ALN-61086015-01	57.0 - 65.0	8.0	6.0	15	8/100	2:1	WT-A-5
ALN-61086030-01	57.0 - 65.0	8.0	6.0	30	8/150	2:1	WT-A-5
ALN-94046015-01	92.0 - 96.0	4.0	6.0	15	8/50	2:1	WT-A-5
ALN-94046030-01	92.0 - 96.0	4.0	6.0	30	8/100	2:1	WT-A-5
Temperature Range			0	to +50°C			

CUSTOM BUILT AMPLIFIERS

The amplifiers with the performance other than listed above are available per customer's request. You may submit your specifications along with the model number per following instruction.

Example: To order a low noise amplifier with center frequency 42 GHz, 2 GHz bandwidth, 5.5 dB noise figure and 24 dB gain, specify ALN-42025524-XX.


Bulletin No. AHP

FEATURES

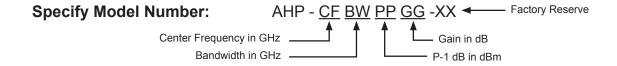
- High output power and IP3
- Up to full waveguide bandwidth
- Single power supply
- Compact size, light weight
- Wide operation temperature range

APPLICATIONS

- Communication transmitters
- Radar front ends
- Power block for multiplier chains
- Transceiver sub-assemblies

AHP Series

DESCRIPTION


AHP series high power amplifiers are discrete and/or MMIC PHEMT devices based amplifiers that operate at the frequency range between 18 to 98 GHz for high output power applications. The amplifiers are offered in two categories, namely, standard and custom built. The custom built amplifiers are offered in various RF interfaces, including standard waveguide or coax connectors, for convenient system integration. The optional input and output integrated isolators are available to further improve the port return loss.

STANDARD AMPLIFIER SPECIFICATIONS

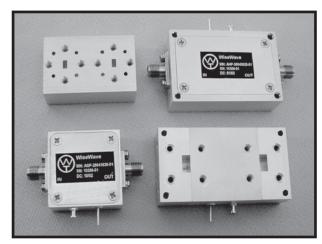
Model Number	Freq. (GHz)	BW (GHz)	P-1 (dBm, Min)	Gain (dB)	V/I (V / mA)	VSWR (Typ)	Outline
AHP-22092825-01	18.0 - 26.5	8.5	28	25	8/550	2:1	WT-A-2
AHP-30052925-01	27.0 - 32.0	5.0	29	25	8/650	2:1	WT-A-2
AHP-34043025-01	32.0 - 36.0	4.0	30	25	8/1,100	2:1	WT-A-2
AHP-38043025-01	36.0 - 40.0	4.0	30	25	8/900	2:1	WT-A-2
AHP-41082220-01	37.0 - 45.0	8.0	22	20	8/500	2:1	WT-A-2
AHP-42042625-01	40.0 - 44.0	4.0	26	25	8/1,500	2:1	WT-A-2
AHP-61101625-01	55.0 - 65.0	10.0	16	25	8/200	2:1	WT-A-5
AHP-61181628-01	52.0 - 70.0	18.0	16	28	8/200	2:1	WT-A-5
AHP-94021818-01	93.0 - 95.0	2.0	18	18	8/500	2:1	WT-A-5
AHP-94022424-01	93.0 - 95.0	2.0	26 (Psat)	24	8/2,000	2:1	WT-A-12
Temperature Range				0 to +50°C			

CUSTOM BUILT AMPLIFIERS

The amplifiers with the performance other than listed above are available per customer's request. You may submit your specifications along with the model number per following instruction.

Example: To order a high power amplifier with center frequency of 38 GHz, 2 GHz bandwidth, 33 dBm P-1 power and 25 dB gain, specify AHP-38023325-XX.

General Purpose Amplifiers


Bulletin No. AGP

FEATURES

- High gain and wide bandwidth
- Low DC power consumption
- Single power supply
- Compact size, light weight
- Wide operation temperature range

APPLICATIONS

- Gain blocks
- High power transmitter driving stage
- Gain block for multiplier chains
- Transceiver sub-assemblies

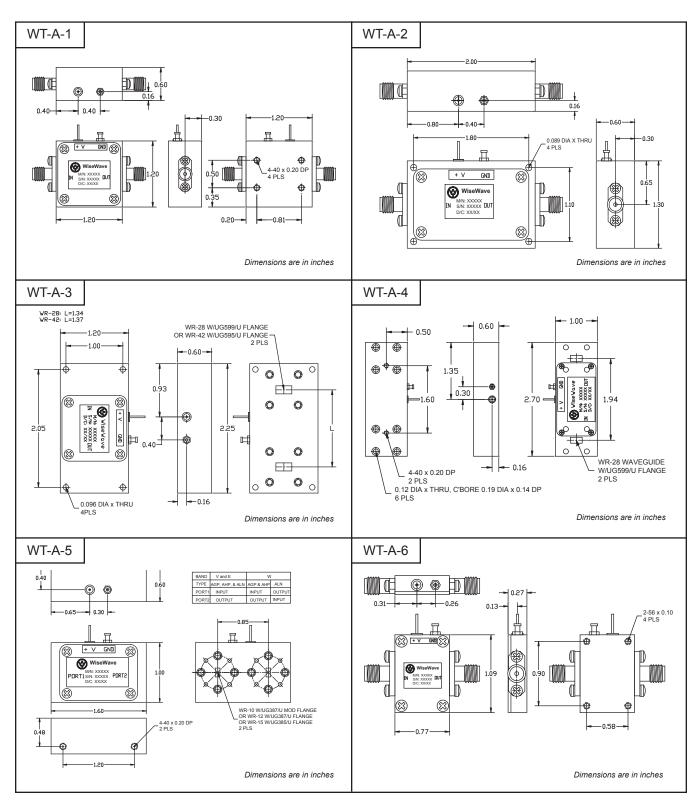
AGP Series

DESCRIPTION

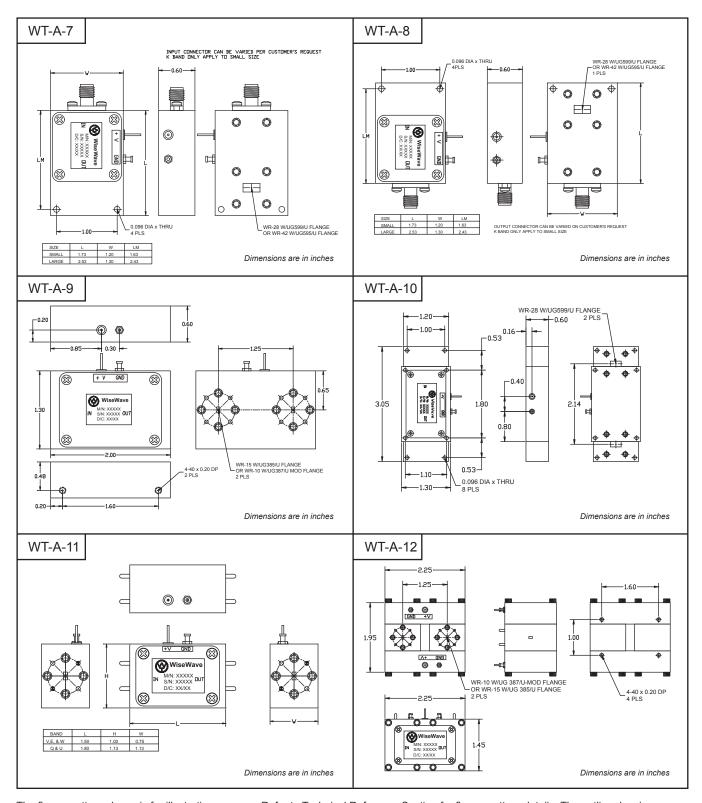

AGP series general purpose amplifiers are discrete and/or MMIC PHEMT devices based amplifiers that operate at the frequency range between 18 to 96 GHz for gain added applications. The amplifiers are offered in two categories, namely, standard and custom built. The custom built amplifiers are offered in various RF interfaces, including standard waveguide or coax connectors, for convenient system integration. The optional input and output integrated isolators are available to further improve the port return loss.

STANDARD AMPLIFIER SPECIFICATIONS

Model Number	Freq. (GHz)	BW (GHz)	P-1 (dBm, Min)	Gain (dB)	V/I (V / mA)	VSWR (Typ)	Outline
AGP-22091515-01	18.0 - 26.5	8.5	15	15	8/100	2:1	WT-A-1
AGP-22091530-01	18.0 - 26.5	8.5	15	30	8/200	2:1	WT-A-1
AGP-22092520-01	18.0 - 26.5	8.5	25	20	8/600	2:1	WT-A-1
AGP-33141515-01	26.5 - 40.0	13.5	15	15	8/100	2:1	WT-A-1
AGP-33141530-01	26.5 - 40.0	13.5	15	30	8/120	2:1	WT-A-1
AGP-33142025-01	26.5 - 40.0	13.5	20	25	8/800	2:1	WT-A-1
AGP-29221015-01	18.0 - 40.0	22.0	10	15	8/50	2:1	WT-A-1
AGP-29221615-01	18.0 - 40.0	22.0	16	15	8/200	2:1	WT-A-1
Temperature Range			0	to +50°C			


CUSTOM BUILT AMPLIFIERS

The amplifiers with the performance other than listed above are available per customer's request. You may submit your specifications along with the model number per following instruction.


Example: To order general purpose amplifier with center frequency 37 GHz, 10 GHz bandwidth, 18 dBm P-1 power and 20 dB gain, specify AGP-37101820-XX.

The flange pattern shown is for illustration purpose. Refer to Technical Reference Section for flange pattern details. The outline drawings shown are standard versions. Contact factory for your specific package requirements.

The flange pattern shown is for illustration purpose. Refer to Technical Reference Section for flange pattern details. The outline drawings shown are standard versions. Contact factory for your specific package requirements.

2. Antennas

Circular and Rectangular Horn Antennas (ARH)	2-8
Lens Corrected Antennas (ALC)	2-9
GPS Antenna (AGA)	2-10
Custom Built Antennas (ASD)	2-11
Antenna Outline Drawings	2-12

Circular and Rectangular Horn Antennas

Bulletin No. ACH & ARH

FEATURES

- Standard gain
- Low side lobes
- Ridged configuration
- Gold plated finishing
- Low cost

APPLICATIONS

- Antenna range reference
- Radiation element for sub-systems

ACH & ARH Series

DESCRIPTION

ACH and ARH series circular and rectangular gain horns are offered for the frequency range of 18 to 110 GHz. The standard gain value and corresponding half power beamwidth at mid-frequency point of each waveguide band are 15, 20, 23, 25 dBi and 24, 13, 9, 7 degrees, respectively. Other gain values are available as custom order. The standard circular gain horns are equipped with circular waveguide interface, while rectangular waveguide interface are available. Other circular waveguide size is available per request. The rectangular gain horns are offered with standard waveguide interface.

STANDARD GAIN HORN SPECIFICATIONS

Circular Horn	K	Ka	Q	U	V	E	W
Model Numbers ¹	ACH	ACH - DDD GG - 02 (Where DDD is the diameter in mils and GG is the gain in dB)					
Frequency Range (GHz)	20 to 24.5	33 to 38.5	38.5 to 43	43 to 50	58 to 68	66 to 88	88 to 110
Circular Waveguide Size (Dia, Inch)	0.356	0.250	0.219	0.188	0.141	0.125	0.094
Gain (dBi @ Fo, Typical)		15.0, 20.0, 23.0, 25.0					
3 dB Beamwidth (°@ Fo, Typical)			24.0,	13.0, 9.0, 7.0			
Sidelobe Level (dB, Typical)	-18.0						
Outline Drawing				WT-B-2			

Rectangular Horn	K	Ka	Q	U	V	E	W
Model Numbers ²	AF	ARH - WG GG - 02 (Where WG is the waveguide size and GG is the gain in dB)					
Frequency Range (GHz)	18 to 26.5	26.5 to 40	33.0 to 50	40 to 60	50 to 75	60 to 90	75 to 110
Circular Wave guide Size (Dia, Inch)	WR-42	WR-28	WR-22	WR-19	WR-15	WR-12	WR-10
Gain (dBi @ Fo, Typical)		15.0, 20.0, 23.0, 25.0					
3 dB Beamwidth, E (°@ Fo, Typical)		22.0, 12.0, 9.0, 7.0					
3 dB Beamwidth, H (°@ Fo, Typical)		22.0, 12.0, 9.0, 7.0					
Sidelobe Level (dB, Typical)		-18.0					
Outline Drawing				WT-B-1			

- Note: 1. To order a Ka band circular gain horn with 0.250" diameter interface, 20 dBi gain, specify ACH-25020-02.
 - 2. To order a W band rectangular gain horn with 20 dBi gain, specify ARH-1020-02.
 - 3. The model number for a horn antenna with non-standard gain or different circular waveguide size may be specified in the similar manner mentioned above.
 - 4. The model number for circular gain horn with rectangular waveguide is specified as ACH-WG GG-01, where WG is the waveguide size and GG is the gain in dB. For example, specify ACH-22 20-01 for a 20dBi gain circular gain horn with WR-22 waveguide interface.

Bulletin No. ALC

FEATURES

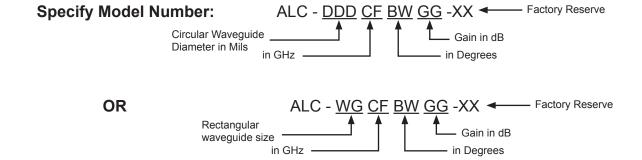
- Linear and circular polarization applicable
- Low side lobes
- High performance
- High gain

APPLICATIONS

- Radar systems
- Communication systems
- Sensor sub-assemblies

ALC Series

DESCRIPTION


ALC series lens corrected horn antennas are offered to cover the frequency range of 18 to 110 GHz. These antennas offer high gain, phase error corrected beam form and low side lobes. The dielectric lens provides not only the phase error correction, but also rugged waterproof structure. The interface of these lens corrected horn antennas are offered in standard circular and rectangular waveguide, respectively. These antennas are widely used in Radar, communication systems and sensor sub-assemblies.

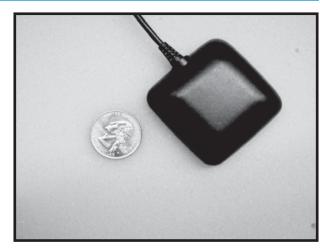
TYPICAL SPECIFICATIONS

Parameters	Typical Range
Frequency Range (Typical)	18 to 110 GHz
Lens Diameter (Typical)	1 to 12 Inches
Gain (Typical)	20 to 40 dB
3 dB Beamwidth (Typical)	3 to 20 Degrees
Sidelobe Level (Typical)	-18 to -25 dB
VSWR (Typical)	1.3:1
Cross Polarization (Typical)*	-25 dB

^{*} Only for Rectangular interface version.

HOW TO ORDER

Example: To order a lens corrected horn antenna with input circular waveguide 0.250" diameter and 22 dBi gain, specify ALC-25022-XX.


Bulletin No. AGA

FEATURES

- Low noise figure
- High gain
- Ceramic patch antenna
- Water-tight housing
- Temperature and vibration qualified
- Compact size
- Low cost

APPLICATIONS

GPS systems

AGA Series

DESCRIPTION

AGA Series GPS antenna is a standard product for the GPS system. The antenna is constructed with machined housing, ceramic patch array, low noise amplifier, filter and high performance Radome material. The circular polarization improves reception ability. The built-in low noise amplifier with very low DC power consumption enhances an already high performance patch array. The integrated design and pre-installed cable offers compact size and ease system connection.

SPECIFICATIONS

Performance Performance								
Model Number	AGA-G501	AGA-G502	AGA-G503	AGA-G504				
Connector Type	SMA (M)	TNC (M)	MMCX (M)	SMC(M)				
Frequency (MHz)		1	575					
Bandwidth (MHz)			± 5					
Polarization		Right Hand Circular						
Gain (dB)	27 (Typical)							
Noise Figure (dB)	1.5 (Typical)							
Interference Rejection (dB)		20 dB at fo ± 1	40 MHz (Typical)					
Power Consumption		+ 3 to +5 Vdc (② 12 mA (Typical)					
Operation Temperature (°C)		-45 to	+ 85 °C					
Storage Temperature (°C)		-50 to	+ 90 °C					
Humidity	100%, Water Tight							
Size (mm)	46 x 34 x 14 (Typ)							
Weight (g)	75 (Typ)							
Mounting		Magnet or Do	uble Sided Tape					

Note: The standard products are equipped with a 3 meters cable and a magnet mounting mechanism.

Bulletin No. ASD

FEATURES

- Custom designed
- Various antenna configurations
- High performance
- Quick delivery
- Cost effective

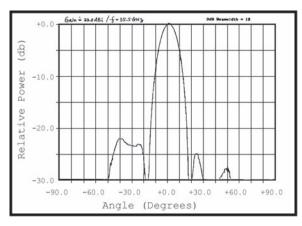
APPLICATIONS

- Communication Systems
- Radar Systems
- Modules
- Sensors

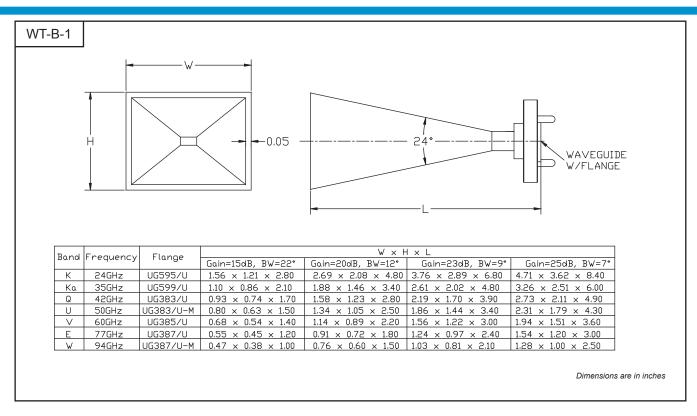
DESCRIPTION

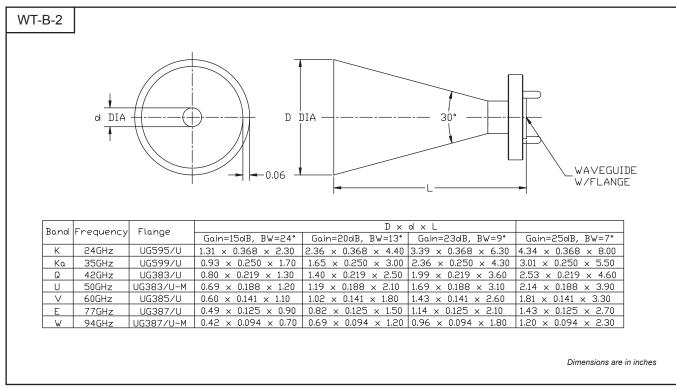
26 GHz Sector Antenna

Ducommun not only supplies the standard gain horn antennas, but also has the ability to design and manufacture other antenna products include, but not limited to

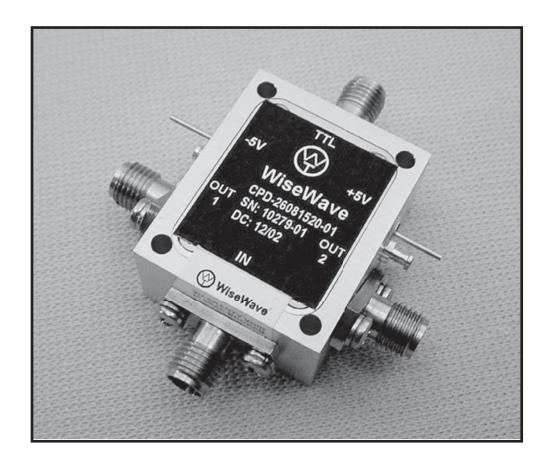

- Corrugated Horn Antennas
- Gassegrain Antennas
- Gaussian Optical Antennas
- Parabolic Antennas
- Reflector Antennas
- Omni Directional Antennas
- Sector Antennas
- Printed Array Antennas

Ka Band 6" Lens Corrected Antenna


Ducommun also understands customer needs and is ready to provide the engineering design and service to its customers for their unique applications.


Ducommun's self-contained, in-house design and fabrication capacities ensured the breath of antenna products offer from rapid prototyping and proof of concept to full production. Ducommun is approved to be a company who can not only supply high performance catalog products, but also realize a concept into the hardware with state-of-the-art performance prototypes and cost effective volume production.

Ka Band Phase Array E Plane Pattern



The flange pattern shown is for illustration purpose. Refer to Technical Reference Section for flange pattern details. The outline drawings shown are standard versions. Contact factory for your specific package requirements.

3. Control Devices

PIN Diode Switches	3-14
77 GHz SP4T and SP10T PIN Switches	3-15
SP4T & SP10T Series Outline Drawings	3-16
Electrical Attenuators	3-17
Fixed and Level Setting Attenuators	3-18
Variable Phase Shifters	3-19
Direct Reading Attenuators	3-20
Control Device Outline Drawings #1	3-21
Control Device Outline Drawings #2	3-22

Bulletin No. CPS, CPD and CPM

FEATURES

- Low insertion loss
- High isolation
- High speed available
- TTL control available
- Single, double and multi-throw

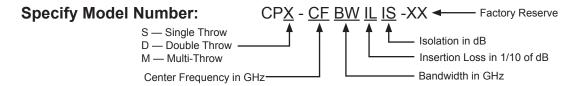
APPLICATIONS

- Pulse modulation
- Radar duplexing
- Receiver protection
- Antenna beam switching

CPS, CPD & CPM Series

DESCRIPTION

CPS, CPD and CPM series are discrete or MMIC based PIN diode switches that operate at the frequency range from 18 to 110 GHz. These switches are especially designed for low insertion loss and high isolation applications. While these switches are designed for broadband operation, lower insertion loss and higher isolation can be achieved by optimizing design for specific narrower frequency range. These PIN diode switches are reflective type and can be tailored to absorptive type by integrating input and output isolators. Furthermore, the internal TTL driver is offered as an option for ease TTL control.


SPECIFICATIONS

Frequency Range	Maximum Available	aximum Available Insertion Loss (dB, Typ)*			Isolation	VSWR	Switch Speed
(GHz)	Bandwidth (GHz)	SPST	SPDT	SPMT	(dB, Min)*	(Typ)	(nS, Min)
18 - 26.5	Full	1.2	1.8	C F	20	2:1	250
26.5 - 40	Full	1.5	2.0	o a	20	2:1	250
33 to 50	10	1.8	2.2	n c	20	2:1	250
40 to 60	10	2.0	2.4	s t u o	20	2:1	250
50 to 75	10	2.2	2.6	l r	20	2:1	250
60 to 90	10	2.3	2.8	t y	20	2:1	250
75 to 110	10	2.5	3.0		20	2:1	250
Temperature Range				0 to +50)°C		

^{*} Insertion Loss & Isolation are for waveguide version.

HOW TO ORDER

The switches with the performance other than listed above are available per customer's request. You may submit your specifications along with the model number per following instruction.

Example: To order a SPDT switch with center frequency of 60 GHz, 4 GHz bandwidth, 2.2 dB insertion loss and 20 dB isolation, specify CPS-60042220-XX.

^{**} Consult factory for the switches with the outlines and specifications other than listed above.

FEATURES

- High power handling
- High isolation
- Low insertion loss
- Compact size
- TTL Controlled

APPLICATIONS

- Antenna beam switching
- Channel selection

SP4T & SP10T Series

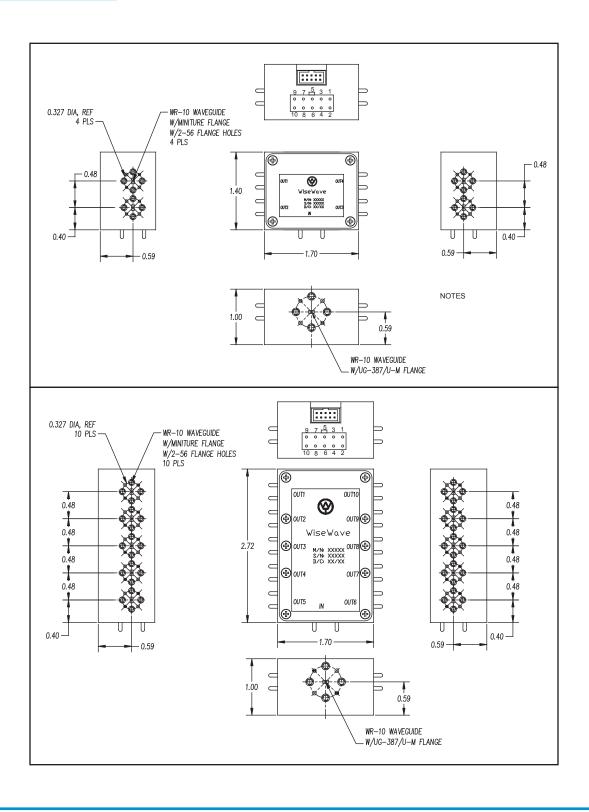
DESCRIPTION

Model **CP4T-77303030-D2 and CP10T-77308030-D2** are PIN diode based SP10T and SP4T switches that operate at the RF frequency range from 75 to 78 GHz. These switches are offered with a built-in TTL driver to simplify the channel switching and to reduce the switching time. The DC and logic control ports are accessed via a single Molex miniature connector. The RF interface of the switches WR-10 waveguide with standard UG387/U-M flange on the input and a miniature flange at the outputs. Operational frequency ranges other than 75 to 78 GHz or number of switching channels other than 4 or 10 are available on request.

SPECIFICATIONS

Description	SP4T (CP4-77305030-D2)	SP10T (CP10-77308030-D2)				
RF Frequency	75 to 78 GHz	75 to 78 GHz				
Insertion Loss	6.5 dB (Max)	10.0 dB (Max)				
Isolation	30 dB (Min)	30 dB (Min)				
Switching Speed	150 ns (Max)	150 ns (Max)				
DC Bias	+5 Vdc / 50 mA; -5 Vdc / 0 mA (Typ)	+5 Vdc / 160 mA; -5 Vdc / 0 mA (Typ)				
Waveguide	Input: WR-12 with UG387/U Flange;	Outputs: WR-12 with Miniature Flange				
DC Connector/TTL Control	MOLEX 87833-1020					

SP4T TRUTH TABLE


C1	C0	Port "On"
0	0	Port 1
0	1	Port 2
1	0	Port 3

SP10T TRUTH TABLE

C3	C2	C1	C0	Port "On"	C3	C2	C1	CO	Port "On"
0	0	0	0	Port 1	0	1	0	1	Port 6
0	0	0	1	Port 2	0	1	1	0	Port 7
0	0	1	0	Port 3	0	1	1	1	Port 8
0	0	1	1	Port 4	1	0	0	0	Port 9
0	1	0	0	Port 5	1	0	0	1	Port 10

OUTLINE DRAWINGS

Bulletin No. CAE

FEATURES

- High dynamic range
- Low insertion loss
- Broad operating bandwidth
- Pin diode or MMIC based circuitry
- Current or voltage controlled

APPLICATIONS

- Automatic level control
- Amplitude modulation
- Instrumentation

CAE Series

DESCRIPTION

CAE series are discrete or MMIC PIN diode based current or voltage controlled electrical attenuators that operate at the frequency range from DC to 110 GHz. These attenuators are especially designed for low insertion loss and high attenuation applications. While PIN diode based attenuators are designed for waveguide bandwidth operation from 18 to 110 GHz, the MMIC based attenuators are designed for broadband operation from DC up to 50 GHz. The maximum attenuation value up to 100 dB is available.

WAVEGUIDE INTERFACE ATTENUATOR SPECIFICATIONS

Frequency Range	Maximum Available	Insertion Loss	Attenuation	VSWR	Tuning Speed	Outline* Drawing
(GHz)	Bandwidth (GHz)	(dB, Typ)*	(dB, Min)	(Typ)	(nS)	
18 to 26.5	Full	1.2	20	2:1	10 to 250	WT-H-3
26.5 to 40	Full	1.5	20	2:1	10 to 250	WT-H-3
33 to 50	10	1.8	20	2:1	10 to 250	WT-H-3, WT-H-4
40 to 60	10	2.0	20	2:1	10 to 250	WT-H-3, WT-H-4
50 to 75	10	2.2	20	2:1	10 to 250	WT-H-3
60 to 90	10	2.3	20	2:1	10 to 250	WT-H-3
75 to 110	10	2.5	20	2:1	10 to 250	WT-H-3
Temperature Range			0 to +50°	°C		

^{*} Insertion Loss & Isolation are for waveguide version.

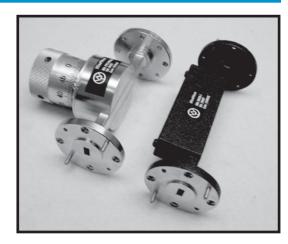
HOW TO ORDER

The attenuators with the performance other than listed above are available per customer's request. You may submit your specifications along with the model number per following instruction.

Example: To order an electrical attenuator with center frequency of 35 GHz, +/- 5 GHz bandwidth, 35 dB minimum attenuation and WR-28 waveguide interface, specify CAE-28351035-XX.

^{**} Consult factory for the attenuators with the outline and specifications other than listed above.

Fixed and Level Setting Attenuators


Bulletin No. CAF and CAL

FEATURES

- Rugged waveguide configuration
- Full band operation
- Up to 30 dB attenuation
- Low cost

APPLICATIONS

- Test benches
- Subsystems
- Prototypes

CAF & CAL Series

DESCRIPTION

CAF and CAL series fixed and level setting attenuators are offered for the frequency range of 18 to 110 GHz in seven waveguide bands. The standard attenuation level for fixed attenuators are 3, 6, 10, 20 and 30 dB, while level setting attenuators are from 0 to 30 dB with full waveguide operational bandwidth. The level setting attenuators are equipped with a micrometer, which enables rapid re-setting. With calibrated charts, the level setting attenuators can be used as direct reading attenuator for bench top test set use. The fixed and level setting attenuators are typically used in the test setups and prototype assemblies where certain attenuation is required.

SPECIFICATIONS

Fixed Attenuator	K	Ka	Q	U	V	Е	W			
Model Number	CAF-	CAF-WG AT-02 (Where WG is the waveguide size and AT is the attenuation value in dB.)**								
Frequency Range (GHz)	18 to 26.5	26.5 to 40	33 to 50	40 to 60	50 to 75	60 to 90	75 to 110			
Waveguide Size	WR-42	WR-28	WR-22	WR-19	WR-15	WR-12	WR-10			
Fixed Attenuation Value (dB, Typ.)*				3, 6, 10, 20 and	d 30					
VSWR (Typical)		1.15:1								
Outline Drawing	WT-H-1	WT-H-1	WT-H-1	WT-H-1	WT-H-1	WT-H-1	WT-H-1			

Level Setting Attenuator	K	Ka	Q	U	V	E	W		
Model Number*	CAL-42-02	CAL-28-02	CAL-22-02	CAL-19-02	CAL-15-02	CAL-12-02	CAL-10-02		
Frequency Range (GHz)	18 to 26.5	26.5 to 40	33 to 50	40 to 60	50 to 75	60 to 90	75 to 110		
Waveguide Size	WR-42	WR-28	WR-22	WR-19	WR-15	WR-12	WR-10		
Level Setting Value (dB, Minimum)		0 to 25							
VSWR (Typical)				1.30:1					
Outline Drawing	WT-H-II	WT-H-II	WT-H-II	WT-H-2	WT-H-2	WT-H-2	WT-H-2		
Power Rating (Maximum)	0.6	0.6	0.5	0.5	0.4	0.3	0.3		

^{*} Consult factory for other attenuation values, waveguide bands and specifications.

^{**} To order a WR-15 fixed attenuator with 20 dB attenuation level, specify CAF-1520-02

Bulletin No. CPL

FEATURES

- Rugged waveguide configuration
- Full band operation
- ❖ 0 to 180 ° minimum phase shifting
- Low cost

APPLICATIONS

- Test benches
- Subsystems
- Prototypes

CPL Series

DESCRIPTION

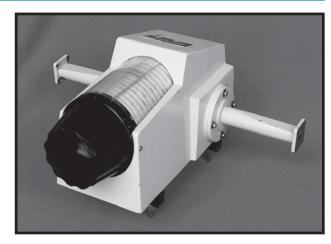
CPL series variable phase shifters are offered for the frequency range of 18 to 110 GHz in seven waveguide bands. The phase shifters utilize low loss dielectric material, which offers minimum insertion loss. The standard phase shifters are equipped with micrometer, which allows fine accurate and repeatable phase settings. The variable phase shifters are typically used in the test setups and prototype assemblies where certain phase shifting is required.

SPECIFICATIONS

Waveguide Band	K	Ka	Q	U	V	E	W	
Model Number	CPL-42-02	CPL-28-02	CPL-22-02	CPL-19-02	CPL-15-02	CPL-12-02	CPL-10-02	
Frequency Range (GHz)	18 to 26.5	26.5 to 40	33 to 50	40 to 60	50 to 75	60 to 90	75 to 110	
Waveguide Size	WR-42	WR-28	WR-22	WR-19	WR-15	WR-12	WR-10	
Variable Phase Shifting Range (Min)	0 to 180 degrees							
VSWR (Typical)				1.4:1				
Insertion Loss (dB, Typical)	0.4	0.4	0.5	0.6	0.7	0.8	1.0	
Power Rating (Maximum)	0.6	0.6	0.5	0.5	0.4	0.3	0.3	
Insertion Length (Inches, Typ)	3.94	3.46	3.46	2.46	2.46	2.46	2.46	
Outline Drawing	WT-H-II	WT-H-II	WT-H-II	WT-H-2	WT-H-2	WT-H-2	WT-H-2	

Note: Contact factory for other waveguide bands and specifications.

Direct Reading Attenuators


Bulletin No. CAR

FEATURES

- Rugged waveguide configuration
- Full band operation
- 0 to 50 dB attenuation range
- High accuracy

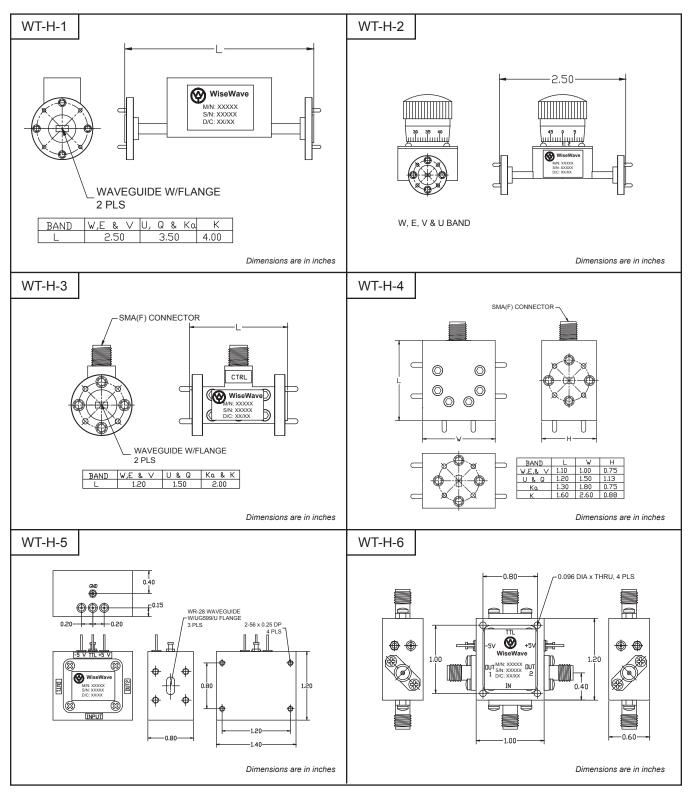
APPLICATIONS

- Test benches
- Instrumentation
- Calibration

CAR Series

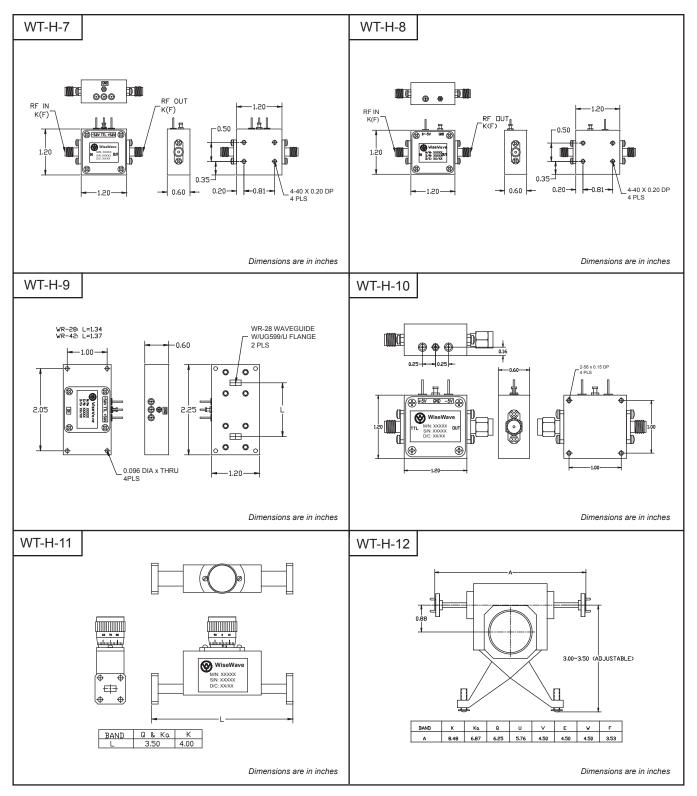
DESCRIPTION

CAR series direct reading attenuators are offered for the frequency range of 18 to 110 GHz in seven waveguide bands. The attenuators are constructed with a precision rotary resistive vane in a circular waveguide. Therefore, they are frequency independent. The attenuators offer a high degree of repeatability and accuracy over whole attenuation range for the full waveguide band operation. The attenuation value is read directly from the helical drum scale. These attenuators are the ideal devices when precision measurement, such as output power, gain, insertion loss, isolation, coupling and return loss is required.

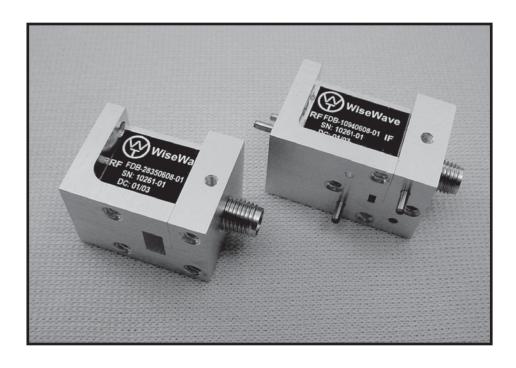

SPECIFICATIONS

Waveguide Band	K	Ka	Q	U	V	E	W
Model Number	CAR-4250	CAR-2850	CAR-2250	CAR-1950	CAR-1550	CAR-1250	CAR-1050
Frequency Range (GHz)	18 to 26.5	26.5 to 40	33 to 50	40 to 60	50 to 75	60 to 90	75 to 110
Waveguide Size	WR-42	WR-28	WR-22	WR-19	WR-15	WR-12	WR-10
Insertion Loss (dB) ²	0.5	0.5	0.6	0.6	0.8	0.8	1.0
Attenuation (dB)	0 to 50	0 to 50	0 to 50	0 to 50	0 to 50	0 to 50	0 to 50
Accuracy (Max)			0.1 dB or 2	% which ever is	greater.		
Return Loss (dB)	20	23	23	23	20	20	20
Power Handling (W)	1.0	0.5	0.5	0.5	0.4	0.3	0.3
Power Rating (Maximum)	0.6	0.6	0.5	0.5	0.4	0.3	0.3
Insertion Length (Inches)	8.5	6.9	6.3	5.8	4.5	4.5	4.5

Note:


- 1. The attenuation range is above the insertion loss value;
- 2. The maximum attenuation setting is up to 60 dB;
- 3. Other waveguide bands are available upon request.

The flange pattern shown is for illustration purpose. Refer to Technical Reference Section for flange pattern details. The outline drawings shown are standard versions. Contact factory for your specific package requirements.

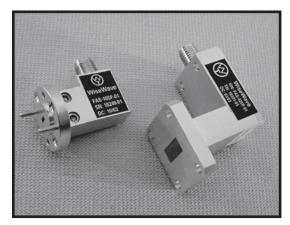


The flange pattern shown is for illustration purpose. Refer to Technical Reference Section for flange pattern details. The outline drawings shown are standard versions. Contact factory for your specific package requirements.

4. Frequency Converters

Broadband Waveguide Detectors	4-24
I/Q Mixers or Phase Detectors	4-25
Active Frequency Multipliers	4-26
Passive Frequency Multipliers	4-27
Harmonic Mixers	4-28
Balanced Mixers	4-29
Externally Biased Balanced Mixers	4-30
Balanced Up-converters	4-31
Subharmonically Pumped Mixers	4-32
Subharmonically Pumped Up-converters	4-33
Single Sideband Modulators	4-34
Frequency Converter Outline Drawings #1	4-35
Frequency Converter Outline Drawings #2	4-36

Broadband Waveguide Detectors


Bulletin No. FAS

FEATURES

- Full waveguide bandwidth
- High sensitivity
- Zero biased
- No mechanical tuning
- Compact size

APPLICATIONS

- Instrumentation
- Power detection
- Direct detection receiver

FAS Series

DESCRIPTION

FAS series broadband waveguide detectors are offered in seven waveguide bands to cover frequency spectrums from 18 to 110 GHz. These detectors employ high performance GaAs Schottky beamlead diodes and a proprietary circuit design to produce high sensitivity and broad bandwidth without external DC bias or mechanical tuning. The standard detectors are equipped with SMA(F) connector for video output and offered negative output voltage polarity for various applications. The matched pairs with similar sensitivity response cross the entire bandwidth are available. These detectors are idea devices where power detection or power monitoring is required.

SPECIFICATIONS

Waveguide Band	K	Ka	Q	U	V	E	W		
Model Number ¹	FAS-42SF-01	FAS-28SF-01	FAS-22SF-01	FAS-19SF-01	FAS-15SF-01	FAS-12SF-01	FAS-10SF-01		
Waveguide Size	WR-42	WR-28	WR-22	WR-19	WR-15	WR-12	WR-10		
Frequency Range (GHz)	18 to 26.5	26.5 to 40	33 to 50	40 to 60	50 to 75	60 to 90	75 to 110		
Sensitivity (mV/mW, Min)	1000	1000	800	800	700	600	500		
Video Bandwidth (MHz, Min)	1	1	1	1	1	1	1		
Output Video Imp. (M ohm, Typ)	1	1	1	1	1	1	1		
Outlines	WT-F-1	WT-F-1	WT-F-2	WT-F-2	WT-F-2	WT-F-2	WT-F-2		
Voltage Output Polarity ²				Negative					
Input RF Power (dBm, Max)		+ 20							
Temperature Range				0 to +50°C					

Note:

- 1. SMA(F) output connector is offered as standard model while SMA(M) is available per customer request. For example, the model number for a WR-22 detector with SMA(M) connector is specified as FAS-22SM-01;
- 2. Positive polarity is available per request. Specify model number with -P1. For example: FAS-10SF-P1.

Bulletin No. FPB

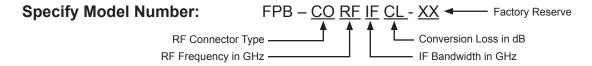
FEATURES

- Low conversion loss
- Low LO drive power
- ❖ I/Q IF outputs
- LO/RF in-line configuration
- Compact size

APPLICATIONS

- Distance detection
- Plasma analysis system
- Communication system

FPB Series


DESCRIPTION

FPB series I/Q mixers are offered in seven waveguide bands to cover frequency spectrums from 18 to 110 GHz with 5 % minimum bandwidth. These mixers employ high performance GaAs Schottky beamlead diodes and balanced configuration to produce superior performance with moderate LO pumping level. The mixers are constructed with fully integrated 2 balanced mixers, 2 3-dB power splitters and phase shifters. These mixers offer high port to port isolation for most application without the requirement of additional filtering. These mixers are ideal candidates for critical distance measurement and specific modulation scheme in certain communication systems where phase information is required.

SPECIFICATIONS

Waveguide Band	K	Ka	Q	U	V	E	W
RF & LO Bandwidth (Min.)	5%	5%	5%	5%	5%	5%	5%
Waveguide Size	WR-42	WR-28	WR-22	WR-19	WR-15	WR-12	WR-10
RF & LO Frequency Range (GHz)	18 to 26.5	26.5 to 40	33 to 50	40 to 60	50 to 75	60 to 90	75 to 110
RF & LO Bandwidth	5%	5%	5%	5%	5%	5%	5%
IF Frequency Range (GHz)	DC to 1.0	DC to 1.0	DC to 1.0	DC to 1.0	DC to 1.0	DC to 1.0	DC to 1.0
LO Pumping Level (dBm)	15	15	16	16	16	16	16
Conversion Loss (dB, Typical)	9.5	10.0	11.0	11.0	11.0	12.0	12.0
IF I/Q Phase Error (Degree)	± 10	± 10	± 10	± 10	± 10	± 10	± 10
Outline Drawing	Consult Factory	Consult Factory	WT-F-4	WT-F-4	WT-F-4	WT-F-4	WT-F-4
Port Isolation (dB, Typical)	30	30	30	30	30	30	30
Maximum Input Signal Level			-	- 23 dBm			
Temperature Range			0	to +50°C			

HOW TO ORDER

Example: To order a V band, 60 GHz I/Q mixer with 1 GHz IF frequency and 11.0 dB conversion loss, specify FPB-15600111-XX.

Bulletin No. FMA

FEATURES

- High output power
- Up to full waveguide operation
- Moderate conversion gain
- Frequency up to 96 GHz
- Single power supply

APPLICATIONS

- Frequency extenders
- Test set
- Local oscillators
- Subsystems

FMA Series

DESCRIPTION

FMA series active multipliers utilize high performance GaAs Schottky beamlead diodes or discrete PHEMT devices and/ or MMIC chips for frequency multiplication and amplification. The multipliers offer moderate conversion gain with output frequency covering 18 to 96 GHz in six waveguide bands. The X2, X3 and X4 are offered as standard multiplication factors. The input power requirement for these multipliers is +10 to +20 dBm. While SMA or K female coaxial connector is equipped for input and waveguide for output interface, WR-28 waveguide input is available as an option for V band doubler and W band tripler design.

SPECIFICATIONS

Output Freq. (GHz)	Multiplying Factor	Input Freq. (GHz)	Output Power (dBm, Typ)	Bandwidth (GHz)	Output Waveguide	Input Connector
18.0-26.5	X 2	9.0-13.25	10 to 30	± 2 to Full	WR-42	SMA(F)
26.5-40.0	X 2	13.25-20.0	10 to 25	± 2 to Full	WR-28	SMA(F)
20.5-40.0	X 4	6.625-10.0	10 to 25	± 2 to Full	WR-28	SMA(F)
33.0-42.0	X 2	16.5-21.0	10 to 23	± 2 to ± 4	WR-22	SMA(F)
33.0-42.0	X 4	8.25-10.5	7 to 23	± 2 to ± 4	WR-22	SMA(F)
54.0-65.0	X 2	27.0-32.5	7 to 16	± 2 to ± 6	WR-15	K(F)
54.0-65.0	X 4	13.5-16.25	7 to 16	± 2 to ± 6	WR-15	K(F)
92.0-96.0	X 2	46.0-48.0	7 to 20	± 2	WR-10	2.4mm(F)
92.0-90.0	X 6	15.3-16.0	5 to 20	± 2	WR-10	SMA(F)
Tempe	rature Range			0 to +50°C		

^{*} Consult factory for other active multiplier and outline requirements.

HOW TO ORDER

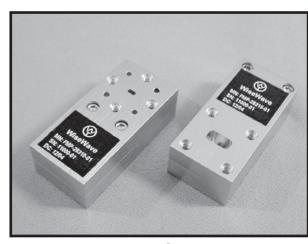
Specify Model Number: FMA - EF BW MM PP - XX - Factory Reserve

Output High End Frequency in GHz

Output Bandwidth in GHz

Output Bandwidth in GHz

Example: To order an active doubler with output end frequency 65 GHz, bandwidth 10 GHz and power 16 dBm, specify FMA-65100216-XX.


Bulletin No. FMP

FEATURES

- High output power
- Full waveguide bandwidth
- Or narrow band with higher output power
- Low conversion loss
- Frequency up to 110 GHz

APPLICATIONS

- Frequency extenders
- Test set
- Local oscillators
- Subsystems

FMP Series

DESCRIPTION

FMP series of passive frequency multipliers utilize high performance GaAs Schottky beamlead diodes and balanced configuration to produce an extremely broad bandwidth performance. The multipliers cover the output frequency range of 18 to 110 GHz with seven waveguide bands. The balanced design enhances either even or odd harmonics while suppressing unwanted odd or even harmonics. External bias is not required for ease system integration. The maximum input power for these standard units are rated at +23 dBm. While SMA or K female coaxial connector is equipped for input and waveguide for output interface, WR-28 waveguide input is available as an option for V band doubler and W band tripler design.

Ducommun also offers passive frequency multipliers with higher output power and narrower bandwidth by utilizing high performance varactor diodes. These multipliers offer several GHz bandwidth with 10 dB typical conversion loss. Contact factory for your detailed requirements.

STANDARD PASSIVE MULTIPLER SPECIFICATIONS (Input Power: 20 dBm)

Model Number	Output Freq. (GHz)	Multiplying Factor	Input Freq. (GHz)	Output Power (dBm, Min)	Output Waveguide	Input Connector	Outline Drawings
FMP-SF242-01	18.0-26.5	X 2	9.00-13.25	6.0	WR-42	SMA(F)	WT-F-7
FMP-SF228-01	26 F 40 0	X 2	13.25-20.00	5.0	WR-28	SMA(F)	WT-F-7
FMP-SF328-01	26.5-40.0	X 3	8.67-13.33	3.0	WR-28	SMA(F)	WT-F-7
FMP-SF322-01	33.0-50.0	X 3	11.00-16.67	3.0	WR-22	SMA(F)	WT-F-7
FMP-SF319-01	40.0-60.0	X 3	13.33-20.00	2.0	WR-19	SMA(F)	WT-F-7
FMP-KF215-01		X 2	25.00-37.50	3.0	WR-15	K(F)	WT-F-7
FMP-28215-01	50.0-75.0	X 2	25.00-37.50	3.0	WR-15	WR-28	WT-F-6
FMP-KF315-01		X 3	16.67-25.00	0.0	WR-15	K(F)	WT-F-7
FMP-KF312-01	60.0-90.0	X 3	20.00-30.00	-1.0	WR-12	K(F)	WT-F-7
FMP-KF310-01	7F 0 110 0	X 3	25.00-36.67	-3.0	WR-10	K(F)	WT-F-7
FMP-28310-01	75.0-110.0	X 3	25.00-36.67	-3.0	WR-10	WR-28	WT-F-6
Temperature	Range			0 to +5	0°C		

Bulletin No. FDH

FEATURES

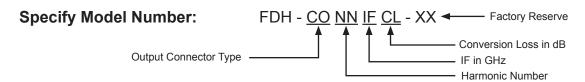
- Low conversion loss
- High Sensitivity
- Full waveguide band operation
- Compact and rugged package

APPLICATIONS

- Spectrum analyzer
- Frequency counter
- Phase lock loop

FDH Series

DESCRIPTION


FDH series harmonic mixers are offered in seven waveguide bands to cover frequency spectra from 18 to 110 GHz. These mixers employ high performance GaAs Schottky beamlead diode to produce superior performance with a moderate LO pumping level. The mixers are designed for full RF waveguide band operation with wide IF bandwidth. The LO and IF frequency range for standard models are 2 to 15 GHz and DC to 4 GHz, respectively. These harmonic mixers are designed for use with spectrum analyzers and frequency counters with built-in frequency diplexer. When used with external diplexer, these mixers can be used to phase lock the high frequency sources. The standard model equipped with SMA(F) connector for LO/IF port connection.

SPECIFICATIONS

Waveguide Band	К	Ka	Q	U	V	E	w		
RF Waveguide Size	WR-42	WR-28	WR-22	WR-19	WR-15	WR-12	WR-10		
RF Frequency Range (GHz)	18 to 26.5	26.5 to 40	33 to 50	40 to 60	50 to 75	60 to 90	75 to 110		
LO Frequency Range (GHz)		2 to 4 GHz, 4 to 8 GHz and 8 to 15 GHz							
IF Frequency Range (GHz)			DC to 1 GHz, D	C to 2.5 GHz ar	d DC to 4.0 GHz				
LO Pumping Level (dBm)	15	15	15	15	15	15	15		
Conversion Loss (dB, Typ)*	20	22	24	26	28	30	32		
Maximum Input Signal Level	+ 20 dBm								
Temperature Range				0 to +50°C					

^{*} The conversion loss is a typical value with harmonic mixing number 8 or lower.

HOW TO ORDER

Example: To order a 6th harmonic mixer with 1 GHz 1F Bandwidth and 20 dB Conversion Loss and WR-22 waveguide RF port and SMA(F) LO/IF port, specify FDH-22060120-XX.

Bulletin No. FDB

FEATURES

- Low conversion loss
- Low LO drive power
- Full waveguide band operation
- Compact and rugged package

APPLICATIONS

- Test equipment
- Communication systems
- Radar receivers

FDB Series

DESCRIPTION

FDB series balanced mixers are offered in seven waveguide bands to cover frequency spectra from 18 to 110 GHz. These mixers employ high performance GaAs Schottky beamlead diodes and balanced configuration to produce superior performance with a moderate LO pumping level. The mixers are designed for full RF waveguide band operation with extremely wide IF bandwidth. Better performance can be obtained by operating the mixers in narrower bandwidth. These mixers are ideal candidates for test equipment, communication systems and Radar receivers where frequency down conversion is required.

FULL BAND MODEL SPECIFICATIONS

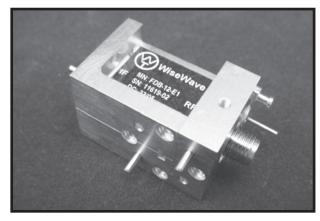
Waveguide Band	К	Ka	Q	U	V	E	w
Waveguide Size	WR-42	WR-28	WR-22	WR-19	WR-15	WR-12	WR-10
Model Number	FDB-42-01	FDB-28-01	FDB-22-01	FDB-19-01	FDB-15-01	FDB-12-01	FDB-10-01
RF & LO Frequency Range (GHz)	18 to 26.5	26.5 to 40	33 to 50	40 to 60	50 to 75	60 to 90	75 to 110
IF Frequency Range (GHz)	DC to 8	DC to 14	DC to 17	DC to 18	DC to 18	DC to 18	DC to 18
LO Pumping Level (dBm)	10 to 13	10 to 13	10 to 13	10 to 13	10 to 13	10 to 13	10 to 13
Conversion Loss (dB, Typical)	6.0	6.5	7.0	7.5	8.0	8.5	9.0
Port Isolation (dB, Typical)	20	20	20	20	20	20	20
Input Signal Level (max)	+17.0 dBm						
Outline	WT-F-3	WT-F-3	WT-F-3	WT-F-3	WT-F-3	WT-F-3	WT-F-3
Temperature Range				0 to +50°C			

NARROW BAND MODELS

The lower cost model with narrow operating bandwidth. Customer may submit the specifications along with the model number per following instruction.

Example: To order a V band balanced mixer with 60 GHz LO frequency, 2 GHz IF bandwidth and 7 dB conversion loss, specify FDB-15600207-XX.

Externally Biased Balanced Mixers


Bulletin No. FDB

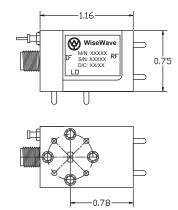
FEATURES

- Low conversion loss
- Low LO drive power
- Single external bias
- Full waveguide band operation
- Compact and rugged package

APPLICATIONS

- Test equipment
- Communication systems
- EW systems

FDB-XX-E1 Series


DESCRIPTION

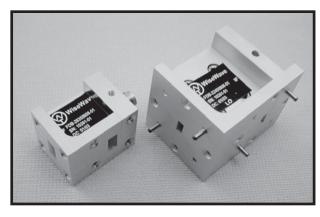
It is always a concern at high millimeterwave band that there is not enough power to drive the mixer, especially full waveguide band. Model **FDB-XX-E1** series externally biased, balanced mixers is especially developed for this purpose. The mixers are offered in 4 waveguide bands to cover frequency spectra from 50 to 140 GHz. These mixers employ high performance GaAs Schottky beamlead diodes and balanced configuration to produce superior performance with a very low LO pumping level. The mixers are designed for full RF waveguide band operation with extremely wide IF bandwidth. Better performance can be obtained by operating the mixers in narrower bandwidth. These mixers are ideal candidates for test equipment, communication systems and EW receivers where frequency down conversion is required.

SPECIFICATIONS

Waveguide Band	V	E	W	F
Waveguide Size	WR-15	WR-12	WR-10	WR-8
Model Number	FDB-15-E1	FDB-12-E1	FDB-10-E1	FDB-08-E1
RF & LO Frequency Range (GHz)	50 to 75	60 to 90	75 to 110	90 to 140
IF Frequency Range (GHz)	DC-18	DC-18	DC-18	DC-18
LO Pumping Level (dBm)	0 to 3	0 to 3	0 to 3	0 to 3
Conversion Loss (dB, Typ)	11.0	12.0	13.0	15.0
LO/RF Isolation (dB, Typ)	20	20	20	20
External Bias (V/mA, Typ)	+5.0/1.0	+5.0/1.0	+5.0/1.0	+5.0/1.0
RF & LO Flange	UG385/U	UG387/U	UG387/U-M	UG387/U-M
IF Connector	SMA(F)	SMA(F)	SMA(F)	SMA(F)
DC Connector	Pin	Pin	Pin	Pin

Outline Drawing

Note: Consult factory for the frequencies and performance other than listed.


Bulletin No. FUB

FEATURES

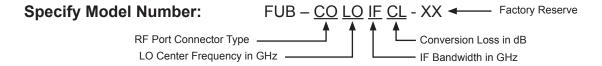
- Low conversion loss
- Low LO drive power
- Full waveguide band operation
- Compact and rugged package

APPLICATIONS

- Test equipment
- Communication systems
- Radar receivers

FUB Series

DESCRIPTION


FUB series balanced up-converters are offered in seven waveguide bands to cover frequency spectra from 18 to 110 GHz. These converters employ high performance GaAs Schottky beamlead diodes and balanced configuration to produce superior performance with a moderate LO pumping level. The converters are designed for full RF waveguide band operation with extremely wide IF bandwidth. Better performance can be obtained by operating the converters in narrower bandwidth. These converters offer moderate port to port isolation, which is high enough for most applications to eliminate additional filtering requirement. The standard converters are offered as double sideband operation and signal sideband version can be realized by adding an optional low pass or band pass filter. These converters are ideal candidates for test equipment, communication systems, frequency extenders and radar transmitters where frequency up conversion is desired.

FULL BAND MODEL SPECIFICATIONS

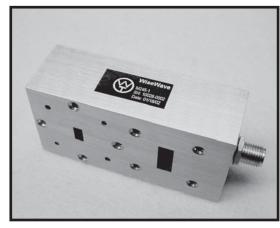
Waveguide Band	K	Ka	Q	U	V	Е	w
Waveguide Size	WR-42	WR-28	WR-22	WR-19	WR-15	WR-12	WR-10
Model Number	FUB-42-01	FUB-28-01	FUB-22-01	FUB-19-01	FUB-15-01	FUB-12-01	FUB-10-01
RF & LO Frequency Range (GHz)	18 to 26.5	26.5 to 40	33 to 50	40 to 60	50 to 75	60 to 90	75 to 110
IF Frequency Range (GHz)	DC to 8	DC to 14	DC to 17	DC to 18	DC to 18	DC to 18	DC to 18
LO Pumping Level (dBm)	10 to 13	10 to 13	10 to 13	10 to 13	10 to 13	10 to 13	10 to 13
Conversion Loss (dB, Typical)	6.0	6.5	7.0	7.5	8.0	8.5	9.0
Port Isolation (dB, Typical)	20	20	20	20	20	20	20
Input Signal Level (max)	+17 dBm						
Outline Drawing	WT-F-3	WT-F-3	WT-F-3	WT-F-3	WT-F-3	WT-F-3	WT-F-3
Temperature Range 0 to +50°C					•		

NARROW BAND MODELS

The lower cost model with narrow operating bandwidth. Customer may submit the specifications along with the model number per following instruction.

Example: To order a W band balanced up-converter with 94 GHz LO frequency, 8 GHz IF bandwidth and 8 dB conversion loss, specify FUB-10940808-XX.

Subharmonically Pumped Mixers


Bulletin No. FDS

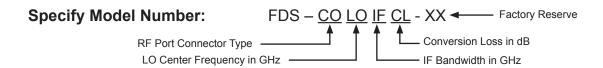
FEATURES

- Low conversion loss
- ❖ LO frequency = ½ RF frequency
- Up to full waveguide band operation
- Compact and rugged package

APPLICATIONS

- Test equipment
- Communication systems
- Receivers

FDS Series


DESCRIPTION

FDS series balanced subharmonically pumped mixers are offered in seven waveguide bands to cover frequency spectra from 18 to 110 GHz. These mixers employ high performance GaAs Schottky beamlead diodes and balanced configuration to produce superior performance with a moderate LO pumping level. The mixers are designed for up to full RF waveguide band operation with wide IF bandwidth. Better performance can be obtained by operating the mixers in narrower bandwidth. The advantage to use subharmonically pumped mixers is their low LO frequency (½ RF frequency) characteristic, therefore, LO/RF frequency separation and their products treatment can be easily realized. In addition, lower LO frequency requirement will reduce system integration cost dramatically, especially, at higher millimeterwave frequency range. These mixers are ideal candidates for test equipment, communication systems and receivers where frequency down conversion is required.

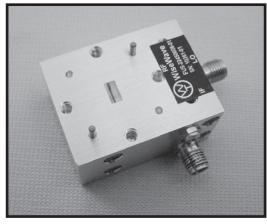
SPECIFICATIONS

Waveguide Band	К	Ka	Q	U	V	E	w
RF Waveguide Size	WR-42	WR-28	WR-22	WR-19	WR-15	WR-12	WR-10
LO Connector	SMA	SMA or K	WG or K	WG or K	WG or K	WG or K	WG or V
RF Frequency Range (GHz)	18 to 26.5	26.5 to 40	33 to 50	40 to 60	50 to 75	60 to 90	75 to 110
LO Frequency Range (GHz)	9 to 13.25	13.25 to 20	16.5 to 25	20 to 30	25 to 37.5	30 to 45	37.5 to 55
IF Frequency Range (GHz)	DC to 4	DC to 6	DC to 8	DC to 10	DC to 12	DC to 15	DC to 18
LO Pumping Level (dBm)	10 to 15	10 to 15	12 to 15	12 to 15	12 to 15	12 to 15	12 to 15
Conversion Loss (dB, Typ)	10	11	12	13	14	15	16
Input Signal Level (max)		+ 20 dBm + 18 dBm					'
Temperature Range				0 to +50°C			

HOW TO ORDER

Example: To order a subharmonically pumped mixer with WR-22 waveguide, 21 GHz LO frequency, DC to 8 GHz IF bandwidth and 12 dB conversion loss, specify FDS-22210812-XX.

Subharmonically Pumped Up-converters


Bulletin No. FUS

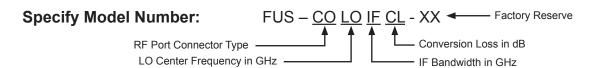
FEATURES

- Low conversion loss
- ❖ LO frequency = ½ RF frequency
- Up to full waveguide band operation
- Compact and rugged package

APPLICATIONS

- Test equipment
- Communication systems
- Receivers

FUS Series


DESCRIPTION

FUS series balanced subharmonically pumped up-converters are offered in seven waveguide bands to cover frequency spectra from 18 to 110 GHz. These up-converters employ high performance GaAs Schottky beamlead diodes and balanced configuration to produce superior performance with a moderate LO pumping level. The up-converters are designed for up to full RF waveguide band operation with wide IF bandwidth. Better performance can be obtained by operating the up-converters in a narrower bandwidth. The advantage to use subharmonically pumped up-converters is their low LO frequency (½ RF frequency) characteristic, therefore, LO/RF frequency separation and their products treatment can be easily realized. In addition, lower LO frequency requirement will reduce system integration cost dramatically, especially, at higher millimeterwave frequency range. These up-converters are ideal candidates for test equipment, communication systems and receivers where frequency up conversion is required.

SPECIFICATIONS

Waveguide Band	K	Ka	Q	U	V	E	W
RF Waveguide Size	WR-42	WR-28	WR-22	WR-19	WR-15	WR-12	WR-10
LO Connector	SMA	SMA or K	WG or K	WG or K	WG or K	WG or K	WG or V
RF Frequency Range (GHz)	18 to 26.5	26.5 to 40	33 to 50	40 to 60	50 to 75	60 to 90	75 to 110
LO Frequency Range (GHz)	9 to 13.25	13.25 to 20	16.5 to 25	20 to 30	25 to 37.5	30 to 45	37.5 to 55
IF Frequency Range (GHz)	DC to 4	DC to 6	DC to 8	DC to 10	DC to 12	DC to 15	DC to 18
LO Pumping Level (dBm)	10 to 15	10 to 15	12 to 15	12 to 15	12 to 15	12 to 15	12 to 15
Conversion Loss (dB, Typ)	10	11	12	13	14	15	16
Input Signal Level (max)		+ 20 dBm + 18 dBm					
Temperature Range		0 to +50°C					

HOW TO ORDER

Example: To order a subharmonically pumped up-converter with WR-10 waveguide, 47 GHz LO frequency, DC to 8 GHz IF bandwidth and 12 dB conversion loss, specify FUS-10470812-XX.

Bulletin No. FSS

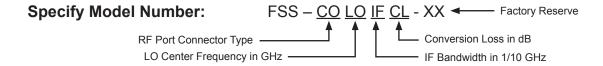
FEATURES

- Low conversion loss
- High image rejection
- Separate I/Q IF inputs
- LO/RF in-line configuration
- Compact size

APPLICATIONS

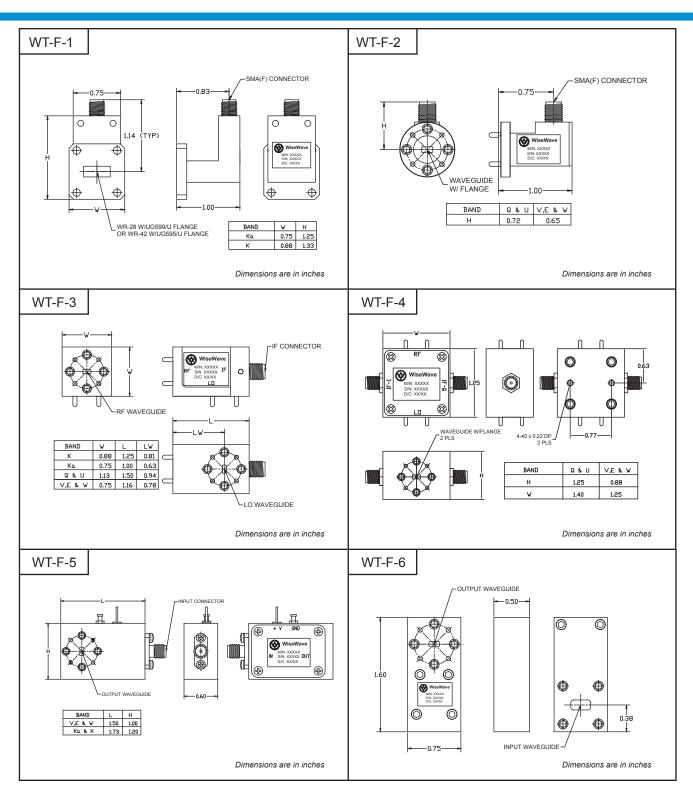
- Single sideband modulation
- Communication system
- Radar system

FSS Series

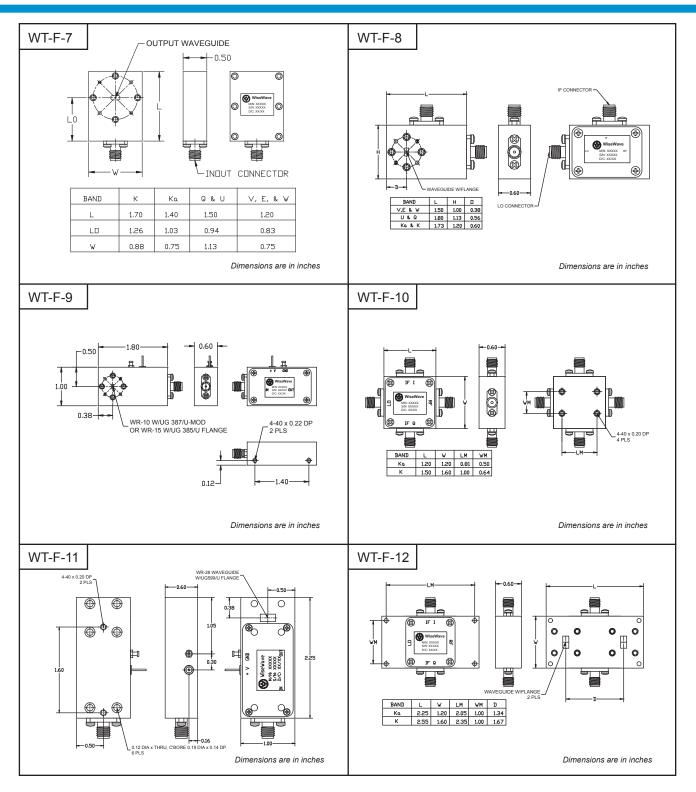

DESCRIPTION

FSS series single sideband modulators are offered in seven waveguide bands to cover frequency spectra from 18 to 110 GHz with 5 % minimum bandwidth. These modulators employ high performance GaAs Schottky beamlead diodes and balanced configuration to produce superior performance with moderate LO pumping level. The modulators are constructed with fully integrated two balanced mixers, two 3-dB power splitters and phase shifters. The modulators are internally phase matched and often be used as single sideband up-converters without adding external filter. The modulators are ideal candidates for test equipment, communication and Radar systems where the single sideband modulation is required.

SPECIFICATIONS

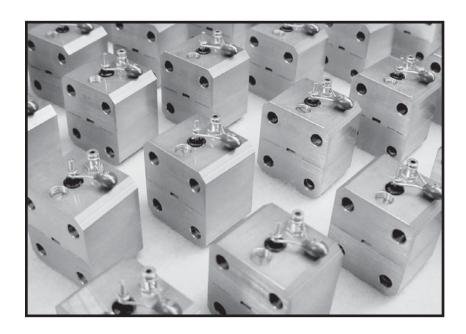

Waveguide Band	K	Ka	Q	U	V	Е	W
Waveguide Size	WR-42	WR-28	WR-22	WR-19	WR-15	WR-12	WR-10
RF Bandwidth (Min)	5%	5%	5%	5%	5%	5%	5%
LO Frequency Range (GHz)	18 to 26.5	26.5 to 40	33 to 50	40 to 60	50 to 75	60 to 90	75 to 110
IF Frequency Range (GHz)	DC to 1.0	DC to 1.0	DC to 1.0	DC to 1.0	DC to 1.0	DC to 1.0	DC to 1.0
LO Pumping Level (dBm)	15	15	16	16	16	16	16
Conversion Loss (dB, Typical)	9.5	10.0	11.0	11.0	11.0	12.0	12.0
Image Rejection (dB, Min)	20	20	20	20	20	20	20
Outline Drawing	WT-F-10	WT-F-10	WT-F-4	WT-F-4	WT-F-4	WT-F-4	WT-F-4
Port Isolation (dB, Typical)	30	30	30	30	30	30	30
RF Bandwidth (Min)	5%	5%	5%	5%	5%	5%	5%
Maximum Input Signal Level	+ 23 dBm					+ 20 dBm	
Temperature Range	0 to +50°C						

HOW TO ORDER


Example: To order a V band, 60 GHz single sideband modulator with 0.5 GHz IF frequency and 11.0 dB conversion loss, specify FSS-15600511-XX.

The flange pattern shown is for illustration purpose. Refer to Technical Reference Section for flange pattern details. The outline drawings shown are standard versions. Contact factory for your specific package requirements.

Frequency Converter Outline Drawings #2



The flange pattern shown is for illustration purpose. Refer to Technical Reference Section for flange pattern details. The outline drawings shown are standard versions. Contact factory for your specific package requirements.

5. Oscillators

Dielectric Resonator Oscillators	5-38
Low Cost K and Ka Band Gunn Diode Oscillators	5-39
Bias Tuned Gunn Diode Oscillators	5-40
Mechanically Tuned Gunn Diode Oscillators	5-41
Full Band Mechanically Tuned Gunn Oscillators	5-42
Varactor Tuned Gunn Diode Oscillators	5-43
Millimeterwave Solid State Noise Sources	5-44
Gunn Oscillator Bias Regulators and Modulators	5-46
Injection Locked Gunn Diode Oscillators	5-48
Phase Locked Oscillators	5-49
Oscillator Outline Drawings #1	5-50
Oscillator Outline Drawings #2	5-51

Dielectric Resonator Oscillators

Bulletin No. OFD

FEATURES

- Internal voltage regulated
- Excellent frequency stability
- Low phase noise
- Low cost and reliable construction

APPLICATIONS

- Communication systems
- Radar systems
- Frequency reference
- Local oscillators

OFD Series

DESCRIPTION

OFD series dielectric resonator stabilized oscillators cover the frequency range of 5 to 26.5 GHz. The oscillators utilize state of the art MIC and FET devices technology to provide highly stable, reliable and clean signal sources. Each oscillator has an internal voltage regulator to provide regulated bias and over-voltage protection. An internal isolator may be integrated in to improve the anti-load pulling ability. Standard products incorporate a screw tuner with a reliable self-locking feature to provide small mechanical frequency tuning. SMA or K female coaxial connector is equipped for standard RF interface. The electrical tunable dielectric resonator oscillators are offered as non-standard units. Consult factory for technical information regarding this choice.

SPECIFICATIONS

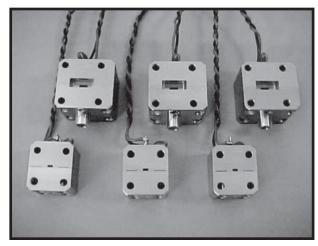
Frequency Range	8.0 to 13.0 GHz	13.0 to 18.0 GHz	18.0 to 26.5 GHz
Output Power	13 to 23 dBm	13 to 23 dBm	13 to 23 dBm
Frequency Stability	+/-3 ppm/°C	+/-3 ppm/°C	+/-3 ppm/°C
Phase Noise (Typ)	-70 dBc/Hz @ 1KHz offset -80 dBc/Hz @ 10KHz offset -113 dBc/Hz @ 100KHz offset	-65dBc/Hz at 1KHz offset -75dBc/Hz at 10KHz offset -107dBc/Hz at 100KHz offset	-60dBc/Hz at 1KHz offset -70dBc/Hz at 10KHz offset -102dBc/Hz at 100KHz offset
Harmonic (Max)	-20 dBc	-20 dBc	-20 dBc
Spurious (Max)	-70 dBc	-60 dBc	-60 dBc
Bias (V/mA)	+12 Vdc / 50 to 150 mA	+12 Vdc / 100 to 200 mA	+12 Vdc / 100 to 200 mA
Outline Drawing	Consult Factory	Consult Factory	Consult Factory
Temperature		0 to +50 °C	

HOW TO ORDER

Specify Model Number

Example: To order an DRO with SMA female connector, frequency output 18 GHz, mechanical tuning bandwidth 10 MHz and power output 16 dBm, specify OFD-SF181016-XX.

Low Cost K and Ka Band Gunn Diode Oscillators


Bulletin No. OGL

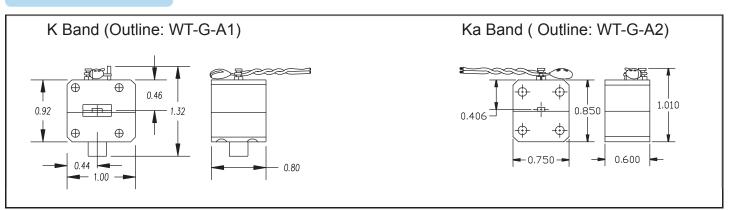
FEATURES

- Fix or mechanically tuned
- Excellent frequency and power stability
- Extremely high external Q
- Very low phase noise
- Self locking tuning mechanism

APPLICATIONS

- Police speed radar guns
- Doppler sensors
- Transceivers

OGL Series


DESCRIPTION

OGL series K and Ka band Gunn diode oscillators are especially designed for low cost commercial applications. Unlike most manufacturers' products, these oscillators are made of high performance devices and machined aluminum cavities. Due to extremely high external Q and temperature compensation mechanism, these oscillators exhibit higher frequency and power stability, lower phase noise and higher anti-load-pulling abilities. The oscillators are ideal candidates for the applications such as Police Speed Radar Gun and Doppler Sensors, where low close-in phase noise and high frequency stability are required.

SPECIFICATIONS

Typical Specifications							
K Band (Model No.: OGL-42240110-31)	Ka Band (Model No.: OGL-28350110-32)						
Center frequency: 24.125 GHz Power Output: +10 dBm (minimum) Mechanical tuning range: ± 500 MHz (minimum) ΔF/ΔT: -0.20 MHz/°C (maximum, -40 to +85°C) ΔP/ΔT: -0.03 dB/°C (maximum, -40 to +85°C) Phase noise: -98 dBc/Hz @ 100 KHz offset Bias: 5.5V/250 mA (Typical) Flange: UG595/U (through holes, 4-40) Temperature Range: -40 to +85°C	Center frequency: 35.000 GHz Power Output: +10 dBm (minimum) Mechanical tuning range: ± 500 MHz (minimum) ΔF/ΔT: -0.40 MHz/°C (maximum, -40 to +85°C) ΔP/ΔT: -0.04 dB/°C (maximum, -40 to +85°C) Phase noise: -95 dBc/Hz @ 100 KHz offset Bias: 5.5V/350 mA (Typical) Flange: UG599/U (through holes, 4-40) Temperature Range: -40 to +85°C						

OUTLINE

Bias Tuned Gunn Diode Oscillators

Bulletin No. OGB

FEATURES

- High output power
- Wide bias tuning range
- Up to 2 MHz tuning rate
- Excellent frequency stability
- Low AM and FM noise

APPLICATIONS

- Test benches
- Local oscillators
- Multiplier drivers
- Subsystems

OGB Series

DESCRIPTION

OGB series bias tuned Gunn oscillators combine proprietary circuit design capability and experience with either GaAs or InP Gunn diode to cover the frequency range of 18 to 150 GHz in nine waveguide bands. The oscillators are especially designed for high output power, fast bias tuning ability and low AM/FM noise characteristics. The standard models are equipped with feedthru pin for bias port, while a SMA(F) connector can be specified at the time of order for better EM shielding. The oscillators can be supplied with optional integrated isolator, **OMR** Gunn oscillator modulator/regulator and temperature heater. Combined with the **OMR** Gunn oscillator modulator/regulator, the bias-tuning characteristic of the oscillator can be enhanced without additional circuitry. The benefit of utilizing bias tuned Gunn oscillator includes better linearity and higher power output compared with its counter part, Varactor Tuned Gunn oscillator (**OGV**). While waveguide is the standard interface, the oscillators are available with coaxial interface as an option. The operating temperature range of the standard unit is 0 to +50°C.

SPECIFICATIONS

Range (GHz)	Output Power (dBm)	Bias Tuning Bandwidth (MHz/V)	Bias Volt- age Range (Volts)	Bias Current Range (A)	Waveguide size	Frequency Stability (MHz/°C)	Power Stability (dB/°C)	Outline Drwing
18-26.5	10-27	10-50	4-12	0.2-2.5	WR-42	-2.0	-0.02	WT-G-1
26.5-40	10-26	10-50	4-12	0.3-2.5	WR-28	-2.5	-0.02	WT-G-1
33-50	10-25	10-200	4-11	0.3-2.0	WR-22	-3.0	-0.03	WT-G-1
40-60	10-24	10-200	3-10	0.3-2.0	WR-19	-4.0	-0.03	WT-G-1
50-75	10-23	100-1000	3-10	0.3-1.0	WR-15	-4.5	-0.03	WT-G-1
60-90	10-20	100-1000	3-10	0.25-1.0	WR-12	-5.0	-0.03	WT-G-1
75-110	10-20	100-1000	4-10	0.25-1.0	WR-10	-6.0	-0.03	WT-G-1
90-140	10-15	100-400	4-10	0.25-1.0	WR-8	-7.0	-0.04	WT-G-1
110-150	5-13	100-400	4-10	0.25-1.0	WR-6	-8.0	-0.04	WT-G-1
Temperat	ure Range	0 to +50 °C						

HOW TO ORDER

Specify Model Number

Example: To order a center frequency 94 GHz bias tuned Gunn oscillator with WR-10 waveguide interface, 0.5 GHz tuning bandwidth 17 dBm output power, specify OGM-10940517-XX.

Mechanically Tuned Gunn Diode Oscillators

Bulletin No. OGM

FEATURES

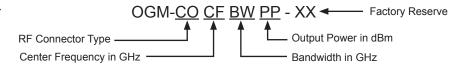
- High output power
- Wide mechanical tuning range
- Bias tuning ability
- Excellent frequency stability
- Low AM and FM noise

APPLICATIONS

- Test benches
- Local oscillators
- Multiplier drivers
- Subsystems

OGM Series

DESCRIPTION


OGM series mechanically tuned Gunn oscillators combine proprietary circuit design capability and experience with either GaAs or InP Gunn diode to cover the frequency range of 18 to 150 GHz in nine waveguide bands. The oscillators are especially designed for high output power, wide mechanical tuning range, bias tuning ability and low AM/FM noise characteristics. The standard oscillators are equipped with a self-locking screw for system integration, while a micrometer driver can be provided instead of a self-locking screw to enhance convenient frequency tuning and reliable frequency resetting. The models with micrometer driver are ideally suited for bench test sources. The oscillators can be supplied with optional integrated isolator, voltage regulator and temperature heater. While waveguide is standard interface, the oscillators are available with coaxial interface as an option. The operating temperature range of the standard unit is 0 to +50°C.

SPECIFICATIONS

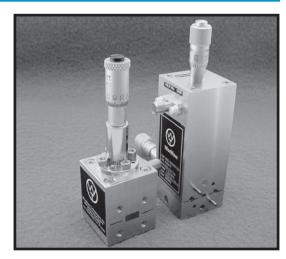
Frequency Range (GHz)	Output Power (dBm)	Mechanical Tuning Range (GHz)	Bias Voltage Range (Volts)	Bias Current Range (A)	Waveguide size	Frequency Stability (MHz/°C)	Power Stability (dB/°C)	Outline Drawing
18-26.5	10-27	0.05-6	4-12	0.2-2.5	WR-42	-2.0	-0.02	WT-G-1,2
26.5-40	10-26	0.05-10	4-12	0.3-2.5	WR-28	-2.5	-0.02	WT-G-1,2,4
33-50	10-25	0.0510	4-11	0.3-2.0	WR-22	-3.0	-0.03	WT-G-1,2,3
40-60	10-24	0.05-12	3-10	0.3-2.0	WR-19	-4.0	-0.03	WT-G-1,2,3
50-75	10-23	0.05-20	3-10	0.3-1.5	WR-15	-4.5	-0.03	WT-G-1,2,3,6
60-90	10-20	0.05-20	3-10	0.25-1.5	WR-12	-5.0	-0.03	WT-G-1,2,3,6
75-110	10-19	0.05-20	4-10	0.25-1.5	WR-10	-6.0	-0.03	WT-G-1,2,3,6
90-140	10-15	0.05-20	4-10	0.25-1.5	WR-8	-7.0	-0.04	WT-G-1,2,3,6
110-150	5-13	0.05-4	4-10	0.25-1.5	WR-6	-8.0	-0.04	WT-G-1,2,3
Temperat	ure Range	0 to +50 °C						

HOW TO ORDER

Specify Model Number

Example: To order a center frequency 60 GHz mechanically tuned Gunn oscillator with WR-15 waveguide interface, 4 GHz tuning bandwidth 17 dBm output power, specify OGM-15600417-XX.

Full Band Mechanically Tuned Gunn Oscillators


Bulletin No. OGF

FEATURES

- Up to full waveguide band coverage
- Single mechanical tuner
- Bias tuning ability
- High output power
- Excellent frequency and power stability
- Low AM and FM noise

APPLICATIONS

- Test sources
- Local oscillators
- EW systems
- Radio astronomy systems
- Frequency extender drivers

OGF Series

DESCRIPTION

OGF series Gunn oscillators are <u>near full waveguide band</u> mechanically tuned Gunn oscillators. The oscillators combine proprietary circuit design capability and experience with either GaAs or InP Gunn diode to cover the frequency range of 18 to 110 GHz in seven waveguide bands. The oscillators are especially designed for high output power, full waveguide band mechanical tuning range, bias tuning ability and low AM/FM noise characteristics. The standard oscillators are equipped with a micrometer driver, which enables convenient frequency tuning and reliable frequency resetting. Unlike many other competitors' products, these oscillators are equipped with a single mechanical tuner, which eases frequency and power control. The oscillator can be converted to an electrical/mechanical-tuned oscillator by replacing micrometer with an electrical driven motor.

The oscillators are ideally suited for test sources, local oscillators of EM and radio astronomy systems and frequency extender drivers. The oscillators can be supplied with optional integrated isolator, voltage regulator and temperature heater. While waveguide is standard interface, the oscillators are available with coaxial interface up to U band as an option.

Combined with **OMR** Gunn modulator/regulator (Bulletin number OMR), **OGF** series Gunn oscillators can produce AM or FM modulated signals with internal or external modulation capability. The operating temperature range of the standard unit is 0 to +50°C.

SPECIFICATIONS

Model Number	Frequency (GHz)	Output Power (dBm, Typ.)	Tuning (GHz, Typ.)	Bias Voltage (Volts, Typ.)	Bias Current (Amp, Typ.)	Waveguide Size	Outline Drawing
OGF-4220-01	18-26.5	+20	6.0	7	1.5	WR-42	1
OGF-2820-01	26.5-40	+20	10.0	5	1.5	WR-28	WT-G-4
OGF-2210-01	33-50	+8	10.0	5	1.5	WR-22	WT-G-2
OGF-1910-01	40-60	+8	12.0	5	1.5	WR-19	WT-G-2
OGF-1507-01	50-75	+7	Full Band	5	1.5	WR-15	1
OGF-1205-01	60-90	+5	Full Band	5	1.5	WR-12	1
OGF-1003-01	75-110	+3	Full Band	5	1.5	WR-10	1
Temperatu	re Range		0 to +50 °C				

Note:

- 1. Consult factory for outline drawings;
- 2. Specifications are subject to change without notice.

Varactor Tuned Gunn Diode Oscillators

Bulletin No. OGV

FEATURES

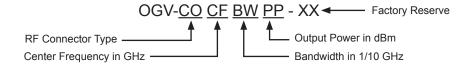
- High output power
- Wide varactor tuning range
- Mechanical tuning ability
- Excellent frequency stability
- Low AM and FM noise

APPLICATIONS

- FMCW transceivers
- Phase locked oscillators
- AFC loops

OGV Series

DESCRIPTION


OGV series varactor tuned Gunn oscillators combine proprietary circuit design capability and experience with either GaAs or InP Gunn diode to cover the frequency range of 18 to 110 GHz in seven waveguide bands. The oscillators are especially designed for high output power, wide varactor tuning range, mechanical tuning ability and low AM/FM noise characteristics. The DC power is applied via a low pass EMI filter, while a female SMA connector is utilized for the varactor tuning voltage. The tuning rate can be as high as 50 MHz. The oscillators are ideally suited for FMCW transceivers, AFC loops and phase locked systems. The oscillators can be supplied with an optional integrated isolator, voltage regulator and temperature heater. While waveguide is standard interface, the oscillators are available with coaxial interface as an option. The operating temperature range is 0 to +50°C.

SPECIFICATIONS

Frequency Range (GHz)	Output Power (dBm)	Varactor Tuning Range (GHz)	Bias Voltage Range (Volts)	Bias Current Range (A)	Waveguide size	Frequency Stability (MHz/°C)	Power Stability (dB/°C)	Outline Drawing
18-26.5	10-25	0.05-0.25	4-12	0.2-2.5	W R-42	-2.0	-0.03	W T-G-5
26.5-40	10-24	0.05-0.50	4-12	0.3-2.5	W R-28	-2.5	-0.03	W T-G-5
33-50	10-23	0.05-0.50	4-11	0.3-2.0	W R-22	-3.0	-0.03	W T-G-5
40-60	10-22	0.05-0.50	3-10	0.3-2.0	W R-19	-4.0	-0.04	W T-G-5
50-75	10-21	0.05-0.50	3-10	0.3-1.5	W R-15	-4.5	-0.04	W T-G-5
60-90	10-19	0.05-0.50	3-10	0.25-1.5	W R-12	-5.0	-0.04	W T-G-5
75-110	10-17	0.05-0.50	4-10	0.25-1.5	W R-10	-6.0	-0.04	W T-G-5
Temperatur	e Range	0			o +50 °C			

HOW TO ORDER

Specify Model Number

Example: To order a center frequency 35 GHz varactor tuned Gunn oscillator with WR-28 waveguide interface, 0.2 GHz tuning bandwidth and 17 dBm output power, specify OGV-28350217-XX.

Millimeterwave Solid State Noise Sources

Bulletin No. ONS

FEATURES

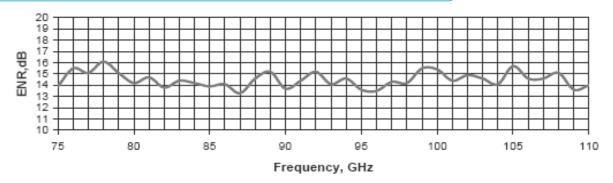
- Solid state noise source
- Full waveguide band
- High ENR with good flatness
- High stability
- Compatible with Agilent noise test set
- Compact size

APPLICATIONS

- Calibration source
- Noise figure measurement
- Test instrument

ONS Series

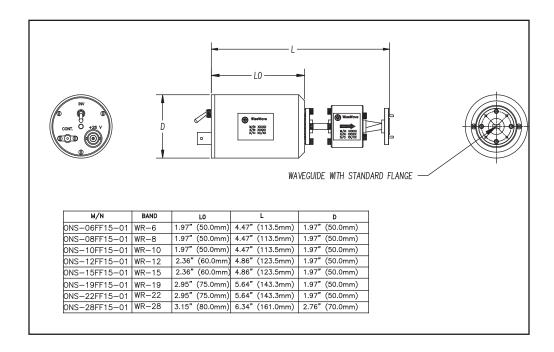
DESCRIPTION


The **ONS** Series of solid state noise sources cover <u>full waveguide bands</u>. The noise sources offered cover the frequency range of 26.5 to 170 GHz in eight overlapping waveguide bands. The noise sources utilize a silicon IMPATT diode to provide a stable 15 dB typical ENR. The bias voltage and current for the noise source are +28 Vdc at 60 mA typical, which is compatible with the Agilent 8970A/B noise meters.

The standard noise sources are supplied with a full band Faraday isolator. While waveguide is the standard interface, the noise sources are also available with a coaxial interface by using the appropriate WiseWave PTC series waveguide to coax adapter up to 110 GHz.

SPECIFICATIONS

Model Number	Frequency (GHz)	ENR (dB, Typ)	Flatness (dB, Typ)	Bias Voltage (volts, Typ)	Bias Current (mA, Typ)	Waveguide Flange
ONS-28FF15-I1	26.5-40	15	±1.0	+28	60	WR-28, UG599/U
ONS-22FF14-I1	33-50	14	±1.5	+28	60	WR-22, UG383/U
ONS-19FF13- I1	40-60	13	±1.5	+28	60	WR-19, UG383/U Mod
ONS-15FF13- I1	50-75	13	±1.5	+28	60	WR-15, UG385/U
ONS-12FF13- I1	60-90	13	±1.5	+28	60	WR-12, UG387/U
ONS-10FF12- I1	75-110	12	±1.5	+28	60	WR-10, UG387/U Mod
ONS-08FF12- I1	90 to 140	12	±1.5	+28	60	WR-08, UG387/U Mod
ONS-06FF12- I1	110- to 170	12	±2.0	+28	60	WR-06, UG387/U Mod


Representative ENR (The ENR shown is without FFF-10-01 isolator)

Millimeterwave Solid State Noise Sources Outline Drawing

OUTLINE DRAWING

Gunn Oscillator Bias Regulators and Modulators

Bulletin No. OGR & OMR

FEATURES

- Low noise
- Internal and external AM/FM modulation
- External modulation rate up to 1 MHz
- Phase locking capability
- Over voltage protection

APPLICATIONS

- Regulator for test bench Gunn oscillators
- Modulator for test bench Gunn oscillators
- Phase lock Gunn oscillator to frequency counters
- Subsystems and instruments

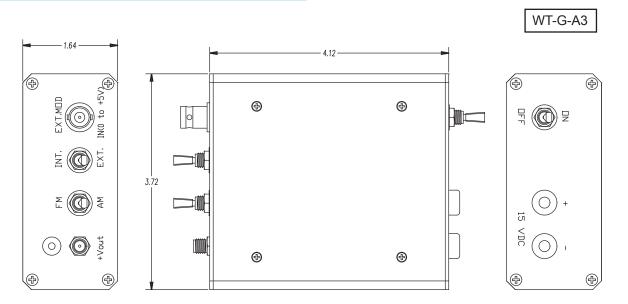
OGR & OMR Series

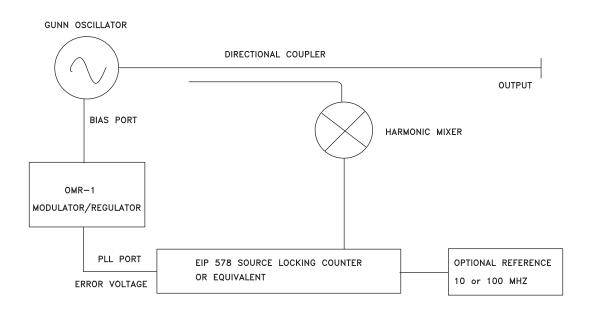
DESCRIPTION

OGR and OMR series Gunn oscillator bias regulator and regulator/modulator are developed as a low noise DC regulator/modulator for Gunn diode oscillators. The **OGR** regulator and **OMR** regulator/modulator supplies well regulated, low noise DC voltage to Gunn oscillators. This feature enhances Gunn oscillator signal purity and also provides protection against destructive over-voltage to the Gunn diode. The **OMR** regulator/modulator features internal or external AM or FM modulation capabilities. The internal modulation rate is 1 KHz and external modulation rate is from DC and up to 1 MHz. This feature allows phase locking the Gunn oscillator to a microwave source-locking counter via bias voltage.

SPECIFICATIONS

Model Number:	OGR-1
Input Voltage (V)	+15.0 (Typical)
Output Voltage Range (V)	+2.0 to +12.0 (Typical)
Output Current (mA)	0 to 2,000 (Typical)
Noise and Ripple (MV, rms)	100 (Typical)
Dimensions (L" x W" x H")	4.2 X 3.8 X 1.7 (Typical)
Connectors	DC Input: Post; DC Output: SMA(F)


Model Number:	OMR-1
Input Voltage (V)	+15.0 (Typical)
Output Voltage Range (V)	+2.0 to +12.0 (Typical)
Output Current (mA)	0 to 2,000 (Typical)
Noise and Ripple (MV, rms)	1.0 (Typical)
Internal Modulation Rate (KHz)	1.0 (Typical)
External Modulation Rate (KHz)	0 to 1,000 (Max)
External Modulation Amplitude (V)	0 to +5 V
Phase Locking Feature	Yes. Use with EIP Source-Locking Counters, Model # 575 and 578.
Dimensions (L" x W" x H")	4.2 X 3.8 X 1.7 (Typical)
Connectors	DC Input: Post; DC Output: SMA(F); Modulation Input: BNC (F); Phase Locking Input: BNC (F)


Gunn Oscillator Bias Regulator and Modulator

Bulletin No. OGR & OMR

OMR Modulator Outline and Port Designation

Phase Lock Application Block Diagram

Injection Locked Gunn Diode Oscillators

Bulletin No. OGI

FEATURES

- High output power
- Moderate gain and bandwidth
- CW operation
- Frequency up to 110 GHz

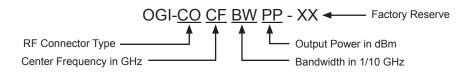
APPLICATIONS

- Power amplification
- Local oscillators
- Multiplier drivers
- Subsystems

OGI Series

DESCRIPTION

OGI series CW injection-locked Gunn oscillators are alternatives to HEMT device and IMPATT diode based stable amplifiers, especially at high millimeterwave frequencies. The operating frequency and power output of these oscillators are up to 110 GHz and 24 dBm. The spectrum purity of the output signal is injected signal dependent. There is an output free running signal in the absence of an input injection signal. The oscillators are provided with integral circulators and optional DC voltage regulator. An optional heater is provided to achieve better temperature stability. For higher gain, broader locking bandwidth and higher output, multi-stage and multi-diodes configurations are used. The operating temperature range is 0 to +50°C.


SPECIFICATIONS

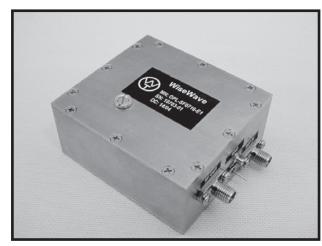
Frequency Range (GHz)	Input Power (dBm)	Output Power (dBm, Min)	Locking Bandwidth (GHz, Max)	Bias Voltage Range (Volts)	Bias Current Range (A)	Waveguide Size	Outline Drawing
26.5-40	0 to 10	24	1.5	4-12	0.3-2.5	WR-28	*
33-50	0 to 10	23	2.0	4-11	0.3-2.0	WR-22	*
40-60	0 to 10	22	2.0	3-10	0.3-2.0	WR-19	*
50-75	0 to 10	20	2.0	3-10	0.3-1.5	WR-15	*
60-90	0 to 10	19	2.0	3-10	0.25-1.5	WR-12	*
75-110	0 to 10	19	2.0	4-10	0.25-1.5	WR-10	*
Temperat	ure Range			0 to +	50 °C		

^{*} Consult factory for outlines.

HOW TO ORDER

Specify Model Number

Example: To order a center frequency 60 GHz injection locked Gunn oscillator with WR-15 waveguide interface, 2 GHz locking bandwidth and 17 dBm output power, specify OGI-15602017-XX.


Bulletin No. OPL

FEATURES

- High output power
- Low phase noise
- Internal or external reference
- Frequency up to 110 GHz

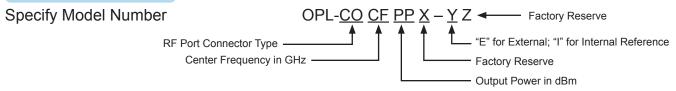
APPLICATIONS

- Instrumentation
- Local oscillators
- Subsystems

OPL Series

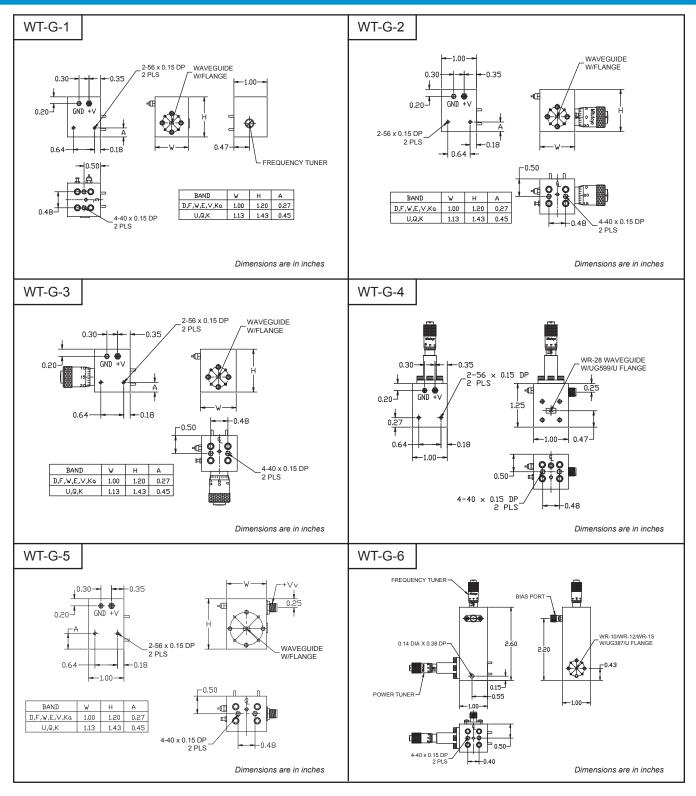
DESCRIPTION

OPL series phase-locked oscillators are offered to cover frequency range up to 110 GHz by utilizing high performance FET oscillators, Gunn oscillators or multiplier/amplifier chain to produce desired frequency and power output. The phase locked oscillators are offered with either internal or external referenced version. The phase noise of an externally referenced phase locked oscillator is depended on the quality of the reference signal.

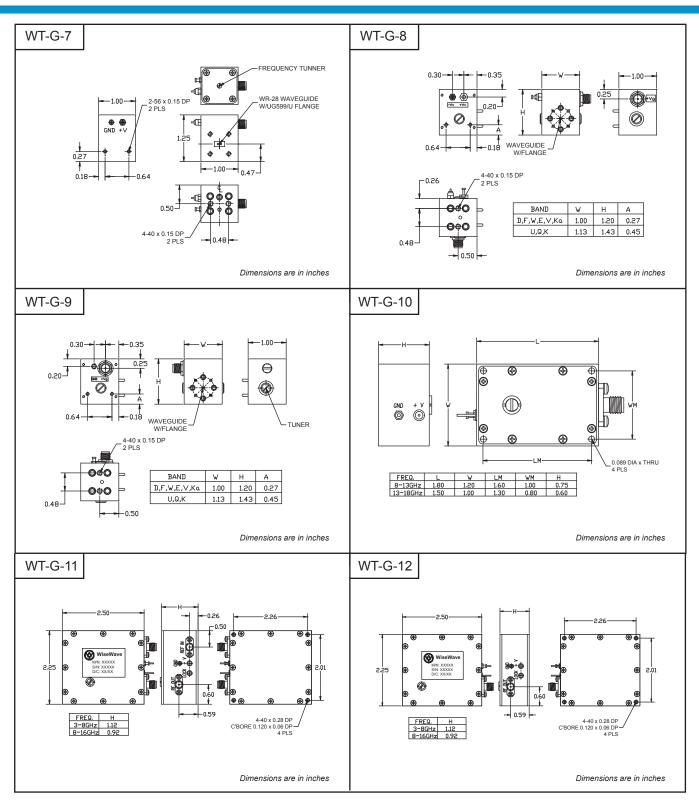

SPECIFICATIONS

FREQUENCY RANGE ¹	5 to 40 GHz	40 to 60 GHz	60 to 110 GHz							
Output Power	10 to 30 dBm	10 to 30 dBm 10 to 20 dBm								
Frequency Stability ²		±5 PPM								
Phase Noise (Typ)		Consult Factory								
Harmonics (Max)		- 20 dBc								
Spurious (Max)		- 60 dBc								
External Reference ³		100 MHz, - 3 to + 3 dBm								
Lock Alarm		Locked = TTL High; Unlocked = TT	L Low							
Temperature Range	0 to +50°C									

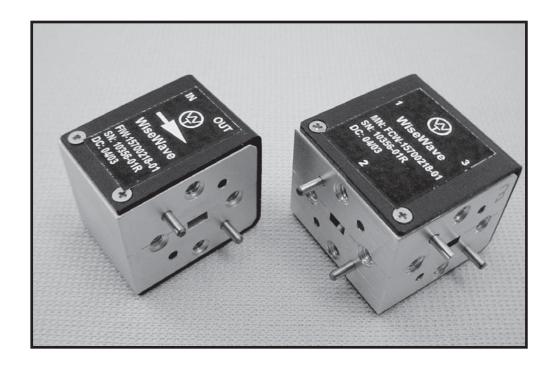
Note:


- 1. Consult factory for the frequency other than listed;
- 2. Frequency stability is with internal reference;
- 3. 100 MHz external reference is for standard model. Consult factory for the frequency other than 100 MHz.

HOW TO ORDER


Example: To order an output frequency 94 GHz, 17 dBm output power phase locked oscillator with WR-10 waveguide interface and externally referenced specify OPL-109417X-EZ.

The flange pattern shown is for illustration purpose. Refer to Technical Reference Section for flange pattern details. The outline drawings shown are standard versions. Contact factory for your specific package requirements.


The flange pattern shown is for illustration purpose. Refer to Technical Reference Section for flange pattern details. The outline drawings shown are standard versions. Contact factory for your specific package requirements.

6. Ferrite Devices

Drop-in Ferrite Isolators and Circulators	6-54
Connectorized Ferrite Isolators and Circulators	6-55
Iso-adapters	6-56
Narrow Band Ferrite Junction Isolators and Circulators	6-57
Full Band Junction Circulators and Isolators	6-58
Full Band Faraday Isolators	6-59
Ferrite Device Outline Drawings	6-60

Drop-in Ferrite Isolators and Circulators

Bulletin No. FID & FCD

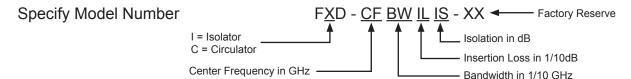
FEATURES

- Low cost, high quality
- Compact size, light weight
- High performance
- Wide operation temperature range
- Common Radar and wireless bands

APPLICATIONS

- Ports isolation
- Module integration
- Transceiver subsystems

FID & FCD Series


DESCRIPTION

FID and **FCD** series narrow band drop-in isolators and circulators cover common Radar and wireless communication frequency bands up to 20 GHz. The isolator is an ideal device where the port isolation is required, while the circulator is commonly used as a duplexer for transceiver subsystems where the transmitter and receiver ports share a single antenna port. They are often used in amplifiers, oscillators, integrated modules and transceiver subsystems. The low cost **FID** and **FCD** series isolators and circulators offer very compact sizes that can be easily inserted into the sub-assembly with minimum size increase. While the standard specifications are shown below, the custom ones with wider bandwidth and higher isolation are available.

SPECIFICATIONS

Frequency Range (GHz)	0.8 to 1.2 1.2 to 2.4		2.0 to 3.5 3.5 to		o 5.0 5.0 to 8.0		8.0 to 18.0					
Bandwidth (MHz min)	25	70	70	200	200	400	300	500	100	600	300	1000
Isolation (dB min)	23	20	23	20	23	20	23	20	20	20	23	20
Insertion Loss (dB max)	0.3	0.4	0.3	0.4	0.3	0.5	0.3	0.4	0.3	0.4	0.4	0.4
VSWR (max)	1.20	1.25	1.20	1.25	1.20	1.25	1.20	1.25	1.25	1.25	1.20	1.25
Power Handling (W, min)	60)	10)	1	10 10		10		10		
Outline Drawings		WT-D-1 and/or WT-D-2										
Temperature Range						0 to	+50°C					

HOW TO ORDER

Example: To order a center frequency 4.0 GHz isolator with 0.3 GHz bandwidth, 0.3 dB maximum insertion loss and 30 dBminimum isolation, specify FID-04030330-XX.

Connectorized Ferrite Isolators and Circulators


Bulletin No. FIC & FCC

FEATURES

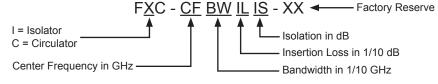
- Low cost, high quality
- Compact size, light weight
- High performance
- Wide operation temperature range
- Common Radar and wireless bands

APPLICATIONS

- Ports isolation
- Module integration
- Transceiver subsystems

FIC & FCC Series

DESCRIPTION


FIC and FCC series narrow band connectorized isolators and circulators cover common Radar and wireless communication frequency bands up to 20 GHz. The isolator is an ideal device where the port isolation is required, while the circulator is commonly used as a duplexer for transceiver subsystems where the transmitter and receiver ports share a single antenna port. The connectorized isolators and circulators equipped with either SMA(F) or SMA(M) connectors for ease connections. The low cost **FIC** and **FCC** series isolators and circulators offer very compact sizes that can be easily inserted into the sub-assembly with minimum size increase. While the standard specifications are shown below, the custom ones with wider bandwidth and higher isolation are available.

SPECIFICATIONS

Frequency Range (GHz)	0.8 то 1.2		1.2 t	1.2 to 2.4		2.0 to 3.5		3.5 to 5.0		5.0 to 8.0		8.0 to 18.0	
Bandwidth (MHz min)	25	70	70	200	200	400	300	500	100	600	300	1000	
Isolation (dB min)	23	20	23	20	23	20	23	20	20	20	23	20	
Insertion Loss (dB max)	0.3	0.4	0.3	0.4	0.3	0.5	0.3	0.4	0.3	0.4	0.4	0.4	
VSWR (max)	1.20	1.25	1.20	1.25	1.20	1.25	1.20	1.25	1.25	1.25	1.20	1.25	
Power Handling (W, min)	6	0	1	0	10 10			10		10			
Outline Drawings		WT-D-3 and/or WT-D-4											
Temperature Range						0 to	+50°C						

HOW TO ORDER

Specify Model Number

Example: To order a center frequency 18 GHz circulator with 1.0 GHz bandwidth, 0.4 dB maximum insertion loss and 20 dB, minimum isolation, specify FCC-18100420-XX.

Bulletin No. FII & FCI

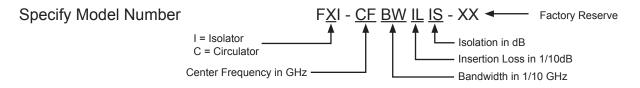
FEATURES

- Low cost, high quality
- Compact size, light weight
- High performance
- Wide operation temperature range
- Common Radar and wireless bands

APPLICATIONS

- Ports isolation
- Module integration
- Transceiver subsystems

FII & FCI Series


DESCRIPTION

FII and FCI series narrow band iso-adapters provide isolation and circulation functions between waveguide and coaxial interface. These iso-adapters cover common Radar and wireless communication frequency bands up to 65 GHz. The iso-adapters are ideal device where the port isolation and duplexing are required. The iso-adapters can be configured with standard waveguide interface with N-type, SMA, K, 2.4 mm and V coax interface. The low cost **FII** and **FCI** series iso-adapters offer very compact sizes that can be easily inserted into the sub-assembly with minimum size increase. While the standard specifications are shown below, the custom ones with up to full waveguide bandwidth and higher isolation are available.

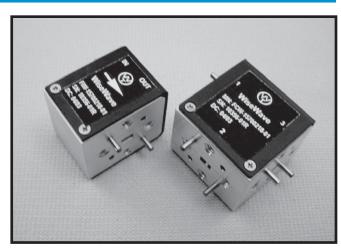
SPECIFICATIONS

Frequency Band	Х	WR-75	KU	K	KA	Q	U	V
Frequency Range (GHz)	8.2 to 12.4	10 to 15	12.4 to 18	18 to 26.5	26.5 to 40	33 to 50	40 to 60	50 to 70
Bandwidth (GHz)	1.0	1.5	1.5	2.0	2.0	2.0	2.0	2.0
Insertion Loss (dB max)	0.4	0.4	0.5	0.5	0.6	0.7	0.8	1.0
Isolation (dB min)	20	20	20	19	18	18	18	18
VSWR (max)	1.25:1	1.25:1	1.25:1	1.25:1	1.25:1	1.3:1	1.3:1	1.4:1
Waveguide Size	WR-90	WR-75	WR-62	WR-42	WR-28	WR-22	WR-19	WR-15
Coax Connector	N, SMA	SMA	SMA	K	K	2.4	V	V
Temperature Range				0 to +	50°C			

HOW TO ORDER

Example: To order a center frequency 18 GHz circulator/iso-adpater with 1.0 GHz bandwidth, 0.5 dB maximum insertion loss and 20 dB minimum isolation, specify FCI-18100520-XX.

Narrow Band Ferrite Junction Isolators and Circulators


Bulletin No. FIW & FCW

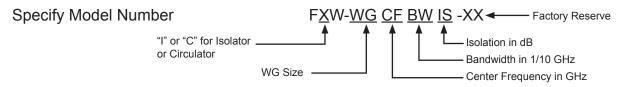
FEATURES

- High quality and volume production
- Compact size, light weight
- High performance
- Wide operation temperature range
- Common communication and Radar frequency bands

APPLICATIONS

- Cavity oscillators
- Amplifiers
- Transceiver subsystems

FIW & FCW Series


DESCRIPTION

FIW and **FCW** series narrow band junction isolators and circulators cover common communication and Radar frequency bands from 8.2 to 110 GHz in eleven waveguide bands. The isolator is an ideal device where the port isolation is required, while the circulator is commonly used as a duplexer for transceiver subsystems where the transmitter and receiver ports share a single antenna port. The **FIW** and **FCW** series isolators and circulators offer very compact size that can be easily inserted into the sub-assembly with minimum size increase. While the standard specifications are shown below, the custom ones with up to full waveguide bandwidth and higher isolation are available.

SPECIFICATIONS

Waveguide Band	Frequency (GHz)	Bandwidth (GHz, Min)	Insertion Loss (dB, Max)	Isolation (dB, Min)	VSWR (Typ)	Power (W, Min)	Outline (Isolator)	Outline (Circulator)
Х	8.2 to 12.4	1.0	0.3	23.0	1.3:1	5.0	Cons	ult Factory
WR-75	10.0 to 15.0	1.2	0.3	23.0	1.3:1	4.0	Cons	ult Factory
Ku	12.4 to 18.0	1.5	0.3	23.0	1.3:1	3.0	Cons	ult Factory
K	18.0 to 26.5	2.0	0.3	22.0	1.3:1	2.0	WT-D-5	WT-D-6
WR-34	22.0 to 33.0	2.0	0.4	20.0	1.3:1	1.0	WT-D-5	WT-D-6
Ka	26.5 to 40.0	3.0	0.4	20.0	1.3:1	1.0	WT-D-5	WT-D-6
Q	33.0 to 50.0	3.0	0.5	18.0	1.3:1	1.0	WT-D-5	WT-D-6
U	40.0 to 60.0	3.0	0.5	18.0	1.3:1	1.0	WT-D-5	WT-D-6
V	50.0 to 75.0	2.0	0.6	18.0	1.3:1	1.0	WT-D-5	WT-D-6
E	60.0 to 90.0	2.0	0.7	18.0	1.3:1	1.0	WT-D-5	WT-D-6
W	75.0 to 110	2.0	0.8	18.0	1.3:1	1.0	WT-D-5	WT-D-6
Temperat	ure Range			0 1	to +50°C			

HOW TO ORDER

Example: To order a center frequency 24.0 GHz isolator with 2 GHz bandwidth, 20 dB minimum isolation and WR-42 waveguide interface, specify FIW-42242020-XX.

Full Band Junction Circulators and Isolators

Bulletin No. FIF & FCF

FEATURES

- Full waveguide band operation
- Low insertion loss
- High Isolation
- Compact size

APPLICATIONS

- Test setup
- Instrumentation
- Subsystems
- Transceivers

FIF & FCF Series

DESCRIPTION

FIF series full band waveguide junction isolators and **FCF** series full band waveguide junction circulators are available from 8.2 to 40 GHz frequency range in five waveguide bands. The isolators and circulators feature low insertion loss and high isolation for full waveguide bands operation. With H-plane junction configuration, the full band junction isolators offer a lower insertion loss compared to the Faraday-rotation types, while circulators offer unique full band operation features. These devices are ideally suited for broad band communication systems, EW systems and test instrument applications.

SPECIFICATIONS

Frequency Band	Х	WR-75	Ku	K	Ka					
Model Number (Isolator)	FIF-90-01	FIF-75-01	FIF-62-01	FIF-42-01	FIF-28-01					
Model Number (Circulator)	FCF-90-01	FCF-75-01	FCF-62-01	FCF-42-01	FCF-28-01					
Frequency Range (GHz)	8.2 to 12.4	10.0 to 15.0	12.4 to 18.0	18 to 26.5	26.5 to 40.0					
Waveguide Size	WR-90	WR-75	WR-62	WR-42	WR-28					
Insertion Loss (dB max)	0.5	0.5	0.5	0.5	0.5					
Isolation (dB min)	18	18	18	16	16					
VSWR (max)	1.35:1	1.35:1	1.35:1	1.40:1	1.40:1					
Flange Type	UG-39/U	WR-75	UG419/U	UG595/U	UG599/U					
Forwarding (W, min)	50	50	50	10	10					
Load Power (W, min)*	1	1	0.5	0.5	0.5					
Outline Drawings		Consult Factory								
Temperature Range			0 to +50°C							

*Note: Isolator only

Bulletin No. FFF

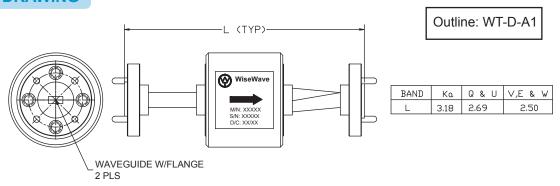
FEATURES

- Full waveguide band operation
- Faraday rotation type
- 18 to 110 GHz frequency range
- High Isolation

APPLICATIONS

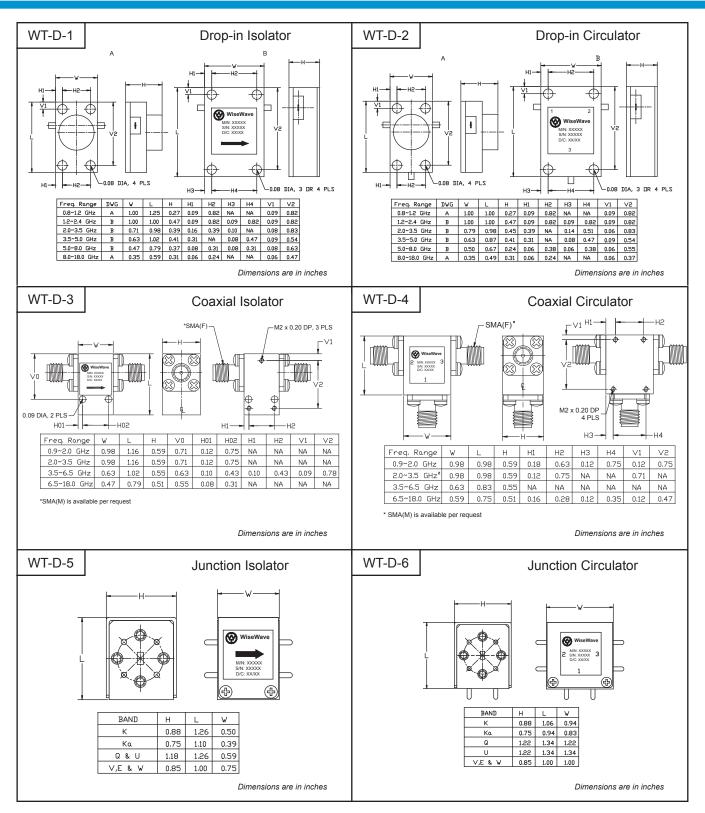
- Test setup
- Instrumentation
- Subsystems
- Transceivers

FFF Series


DESCRIPTION

FFF series full band Faraday waveguide are available from 18 to 110 GHz frequency range in seven waveguide bands. The isolators feature moderate insertion loss and high isolation up to 30 dB for full waveguide bands operation. These devices are ideally suited for broadband communication systems or test instrument applications.

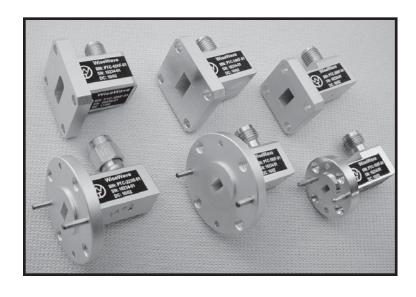
SPECIFICATIONS


Frequency Band	K	Ka	Q	U	V	E	W
Model Number	FFF-42-01	FFF-28-01	FFF-22-01	FFF-19-01	FFF-15-01	FFF-12-01	FFF-10-01
Freq. Range (GHz)	18-26.5	26.5-40	33-50	40-60	50-75	60-90	75-110
Waveguide Size	WR-42	WR-28	WR-22	WR-19	WR-15	WR-12	WR-10
Insertion Loss (dB max)	1.0	1.2	1.5	1.6	1.8	2.0	2.3
Isolation (dB typ)	30	30	30	30	30	30	30
VSWR (max)	1.4:1	1.4:1	1.4:1	1.4:1	1.4:1	1.5:1	1.5:1
Power Handling (W)	2.0	2.0	1.5	1.5	1.0	1.0	1.0
Flange Type	UG595/U	UG599/U	UG383/U	UG383/U Mod	UG385/U	UG387/U	UG387/U Mod
Temperature Range				0 to +50°C			

OUTLINE DRAWING

Note: The outline is subject to change without notice. Please confirm with factory if the outline is a critical issue to your design.

Ferrite Device Outline Drawings

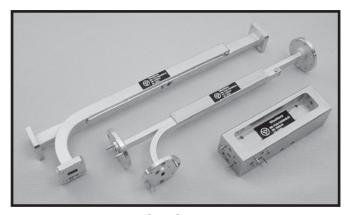


The flange pattern shown is for illustration purpose. Refer to Technical Reference Section for flange pattern details. The outline drawings shown are standard versions. Contact factory for your specific package requirements.

7. Passive Components

Multi-Hole Directional Couplers	7-62
Crossguide Directional Couplers	7-63
Matched Hybrid Tees (Magic Tees)	7-64
Coax Power Dividers	7-65
Waveguide Bandpass Filters	7-66
Waveguide Low Pass Filters	7-67
Waveguide Highpass Filters	7-68
Waveguide Diplexers	7-69
Waveguide Transitions	7-70
Waveguide Flange and Bulkhead Adapters	7-71
Waveguide to Coax Adapters	7-72
Waveguide Sections, Bends, Twists and Loads	7-73
Waveguide Jack	7-76
Passive Component Outline Drawings #1	
Passive Component Outline Drawings #2	7-78

Multi-Hole Directional Couplers


Bulletin No. PCM

FEATURES

- Waveguide or split block configuration
- Light weight
- High directivity
- Low insertion loss
- Low cost

APPLICATIONS

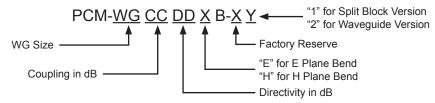
- Test benches
- Subsystems
- Power sampling

PCM Series

DESCRIPTION

PCM series multi-hole directional couplers are offered for the frequency range of 18 to 110 GHz in seven waveguide bands. The standard coupling levels are 3, 6, 10, 30 and 40 dB with full waveguide operational bandwidth. The high directivity is achieved via low VSWR built-in termination. The couplers are typically used for power sampling or frequency monitoring with minimum signal loss on the main transmitting path. The multi-hole couplers are especially used in the test setups where power reflection measurement is required. The multi-hole couplers are offered in two physical configurations, waveguide and split block.

SPECIFICATIONS


Waveguide Band	K	KA	Q	U	V	E	W			
Frequency Range (GHz)	18 to 26.5	26.5 to 40	33 to 50	40 to 60	50 to 75	60 to 90	75 to 110			
Waveguide Size	WR-42	WR-28	WR-22	WR-19	WR-15	WR-12	WR-10			
Coupling Level (dB, Typical)		3, 6, 10, 20, 30 and 40								
Coupling Flatness (dB, Maximum)	± 0.8	± 0.8	± 0.8	± 0.9	± 0.9	± 0.9	± 1.0			
Insertion Loss (dB, Typical) ¹	0.7	0.7	0.7	0.8	1.0	1.2	1.5			
Directivity (dB, Typical)	30	30	30	30	30	30	30			
Main Line VSWR (Typical)	1.1:1	1.1:1	1.1:1	1.2:1	1.2:1	1.2:1	1.2:1			
Secondary Line VSWR (Typical)	1.1:1	1.1:1	1.2:1	1.2:1	1.2:1	1.25:1	1.25:1			
Outline for Split Block Version ²	WT-E-9	WT-E-9	WT-E-9	WT-E-9	WT-E-9	WT-E-9	WT-E-9			
Outline for Waveguide Version ²	WT-E-10	WT-E-10	WT-E-10	WT-E-10	WT-E-10	WT-E-10	WT-E-10			

Note:

- 1. Insertion loss is defined as the power loss in addition to the coupling loss. Contact factory for other waveguide size or coupling level needs.
- 2. Split block version does not have an E plane bend version. Contact factory for outline drawing of waveguide version with E bend coupling port.

HOW TO ORDER

Specify Model Number

Example: To order a WR-15 waveguide multi-hole directional coupler with 20 dB coupling level, 30 dB minimum directivity E plane bend for coupling port and waveguide version, specify PCM-152030EB-X2.

Crossguide Directional Couplers

Bulletin No. PCC

FEATURES

- Waveguide or split block configurations
- Light weight
- High performance
- Low insertion loss
- Low cost

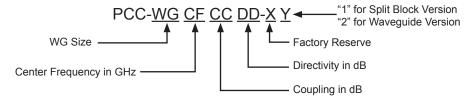
APPLICATIONS

- Test benches
- Subsystems
- Power sampling

PCC Series

DESCRIPTION

PCC series crossguide directional couplers are offered for the frequency range of 18 to 110 GHz in seven waveguide bands. The standard coupling level is 20 dB with moderate operation bandwidth and directivity. The couplers are typically used for power sampling or frequency monitoring with minimum signal loss on the main transmitting path. The crossguide couplers perform similar system functions while delivering much shorter insertion length and lower insertion loss compared to their counterpart, multi-hole directional couplers. Because of its unique features, these directional couplers are ideal candidates for system integration. The crossguide couplers are offered in two physical configurations, waveguide and split block.


SPECIFICATIONS

Waveguide Band	K	KA	Q	U	V	Е	W
Frequency Range (GHz)	18 to 26.5	26.5 to 40	33.0 to 50	40 to 60	50 to 75	60 to 90	75 to 110
Waveguide Size	WR-42	WR-28	WR-22	WR-19	WR-15	WR-12	WR-10
Bandwidth (GHz,Typical)	6	8	10	12	15	18	20
Coupling Level (dB @ Fo, Typical)	15 to 30	15 to 30	15 to 30	15 to 30	15 to 30	15 to 30	15 to 30
Coupling Flatness (dB, Maximum)	± 1.5	± 1.5	± 1.6	± 1.6	± 1.6	± 1.8	± 1.8
Insertion Loss (dB, Maximum) ¹	0.5	0.5	0.7	0.7	0.8	1.0	1.0
Directivity (dB, Typical)	16	16	16	15	15	15	15
Main Line VSWR (Maximum)	1.2:1	1.2:1	1.2:1	1.2:1	1.2:1	1.25:1	1.25:1
Secondary Line VSWR (Maximum)	1.2:1	1.2:1	1.2:1	1.2:1	1.2:1	1.25:1	1.3:1
Outline for Split Block Version	WT-E-7	WT-E-7	WT-E-7	WT-E-7	WT-E-7	WT-E-7	WT-E-7
Outline for Waveguide Version	WT-E-8	WT-E-8	WT-E-8	WT-E-8	WT-E-8	WT-E-8	WT-E-8

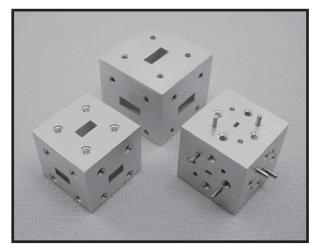
Note: 1. Insertion loss is defined as the power loss in addition to the coupling loss. Contact factory for other waveguide size or coupling level needs.

HOW TO ORDER

Specify Model Number

Example: To order a center frequency 94 GHz crossguide coupler with 20 dB coupling level, 15 dB minimum directivity and WR-10 waveguide interface and split block version, specify PCC-10942015-X1.

Matched Hybrid Tees (Magic Tees)


Bulletin No. PCT

FEATURES

- High isolation
- Low insertion loss
- Excellent port balance
- Wide bandwidth
- Rugged mechanical construction

APPLICATIONS

- Power splitting & combining
- Phase & frequency discriminating

PCT Series

DESCRIPTION

PCT series waveguide matched hybrid tees(Magic Tees) are available in microwave and millimeterwave frequency bands up to 110 GHz. These hybrid tees are matched power dividers or combiners for many system applications. These hybrid tees are four port couplers. A signal inputting to H-plane port is equally split into two amplitude balanced, in phase signals at colinear ports (H-arms) and isolated from the E-plane port, while a signal inputting to E-plane port is equally split into two amplitude balanced, 180° out of phase signals at colinear ports (H-arms) and isolated from the E-plane port. The in-phase and equal amplitude signals inputting into two colinear ports can result combined signal at H-plane port and cancelled signal at E-plane port. This feature is widely used in the monopulse antenna feed structure and phase testing setup. The typical operating bandwidth of the matched hybrid tees is up 80 % of waveguide bandwidth while it can cover full waveguide bandwidth with slight performance degradation at band edge. The matched hybrid tees are readily to be used to configure 4, 8 and 16 way power dividers.

SPECIFICATIONS

Frequency Band	K	KA	Q	U	V	E	W
Waveguide Size	WR-42	WR-28	WR-22	WR-19	WR-15	WR-12	WR-10
Frequency Range (GHz)	18 to 26.5	26.5 to 40	33 to 50	40 to 60	50 to 75	60 to 90	75 to 110
Insertion Loss (dB, Typ)*	0.3	0.3	0.4	0.4	0.4	0.5	0.5
Ports Isolation (dB, Min)	20	20	20	20	20	20	20
Amplitude Un-Balance (dB, Max)	± 0.1	± 0.1	± 0.2	± 0.2	± 0.2	± 0.3	± 0.3
VSWR (Typ)	1.5:1	1.5:1	1.5:1	1.5:1	1.5:1	1.5:1	1.5:1
Outline Drawing	WT-E-1	WT-E-1	WT-E-1	WT-E-1	WT-E-1	WT-E-1	WT-E-1

^{*} Insertion loss is defined as the power loss in addition to the coupling loss. Contact factory for other waveguide size.

HOW TO ORDER

Specify Model Number

Bulletin No. PPD

FEATURES

- ❖ 12 to 45 GHz
- Even power splitting
- Low insertion loss
- Wide bandwidth
- High port isolation

APPLICATIONS

- Laboratory
- Instrumentation
- Subsystems

PPD Series

DESCRIPTION

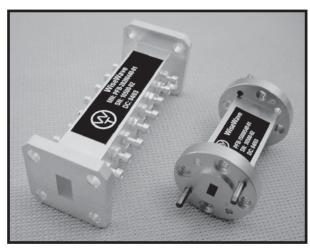
PPD series coax standard power dividers are available in 2 way and 4 way power splitting configuration to cover the frequency range of 12 to 45 GHz frequency range. Unlike their resistive counterpart, these power dividers offer extremely low insertion loss and high port to port isolation while having moderate operating bandwidth. The power dividers are ideal choices where the precise power splitting is required. The power dividers can be used as power combiners.

SPECIFICATIONS

Frequency Range (GHz)	12 to 18	18 to 25	20 to 30	25 to 35	30 to 40	35 TO 45			
2 Way Power Dividers									
Model Number	PPD-SF150602	PPD-KF220802	PPD-KF251002	PPD-KF301002	PPD-KF351002	PPD-2F401002			
Insertion Loss (dB Typical)	1.4	1.5	1.6	1.7	1.9	2.0			
Amplitude Balance (dB Max)	± 0.12	± 0.15	± 0.18	± 0.20	± 0.22	± 0.25			
Port Isolation (dB, Min)	20	20	20	20	20	20			
VSWR (Typical)	2:1	2:1	2:1	2:1	2:1	2:1			
Outline Drawing	WT-E-11	WT-E-11	WT-E-11	WT-E-11	WT-E-11	WT-E-11			
		4 Way Pov	wer Dividers			^			
Model Number	PPD-KF251004	PPD-KF301004	PPD-KF351004	PPD-2F401004					
Insertion Loss (dB Typical)	2.4	2.5	2.6	2.7	2.9	3.0			
Amplitude Balance (dB Max)	± 0.22	± 0.25	± 0.28	± 0.30	± 0.32	± 0.35			
Port Isolation (dB, Min)	20	20	20	20	20	20			
VSWR (Typical)	2:1	2:1	2:1	2:1	2:1	2:1			
Outline Drawing	WT-E-12	WT-E-12	WT-E-12	WT-E-12	WT-E-12	WT-E-12			

TECHNICAL NOTATION

- These power dividers offer wider operating bandwidth than shown above with moderate performance degradation. For example, PDD-KF301002 can cover 25 to 40 GHz frequency range with slightly higher VSWR (2.5:1) in 35 to 40 GHz frequency band.
- The standard products are equipped with K (2.92 mm) female coax connectors. Different type connectors, such as 2.4 mm or V connectors, both male and female type are available per request.
- To order the product with the specification other than listed, contact factory with your detailed requirement.


Bulletin No. PFB

FEATURES

- High rejection
- Low insertion loss
- Frequency up to 110 GHz
- Rugged mechanical construction

APPLICATIONS

- Outdoor Units
- Subsystems
- Transceivers

PFB Series

DESCRIPTION

PFB series waveguide bandpass filters are available in millimeterwave frequency bands up to 110 GHz and major communication frequency bands. There are two types of configurations employed in these bandpass filters. The cavity/tunable version offers best performance and design flexibility, while E-plane version offers low cost and large volume production solution. The typical pass band bandwidth is 2 to 10% and in band ripple is 0.1 to 0.5 dB.

TYPICAL SPECIFICATIONS

Frequency Band	K	KA	Q	U	V	E	W
Waveguide	WR-42	WR-28	WR-22	WR-19	WR-15	WR-12	WR-10
Frequency Range (GHz)	18 to 26.5	26.5 to 40	33 to 50	40 to 60	50 to 75	60 to 90	75 to 110
Insertion Loss (dB) ¹	0.8 to 1.2	0.8 to 1.2	0.8 to 1.5	1.0 to 1.5	1.0 to 1.8	1.2 to 1.8	1.2 to 2.0
Rejection (dB) ²	30 to 50						
Ripple in Passband	0.1 to 0.5						
Outline for E Plane Version	WT-E-2						

Note:

- 1. The pass band insertion loss is bandwidth related;
- The out of band rejection is offset frequency related. Consult factory for you specific bandpass filter requirement.

HOW TO ORDER

Specify Model Number

Example: To order a WR-28 bandpass filter with 38 GHz center frequency, 2.2GHz bandwidth and 45 dB rejection, specify PFB-28382245-XX.

Bulletin No. PFL

FEATURES

- High rejection
- Low insertion loss
- Frequency up to 110 GHz
- Rugged mechanical construction

APPLICATIONS

- Test systems
- Subsystems
- Transceivers

PFL Series

DESCRIPTION

PFL series waveguide low pass filters are available in millimeterwave bands to cover the frequency range up to 110 GHz. The high pass nature of waveguide dictates the low end cut off for standard model. Both low end and high end cut off frequencies can be specified as a custom order. In fact, the waveguide low pass filters are the bandpass filters with very broad pass band. They are ideally suited for broad band system applications, such as EW system, instrumentation and harmonic and spurious rejections, etc.

STANDARD PRODUCT SPECIFICATIONS

Frequency Band	K	Ka	Q	U	V	Ε	W
Model Numbers	PFL-42-01	PFL-28-01	PFL-22-01	PFL-19-01	PFL-15-01	PFL-12-01	PFL-10-01
Waveguide	WR-42	WR-28	WR-22	WR-19	WR-15	WR-12	WR-10
Passband (GHz)	16 to 26.5	22 to 40	28 to 50	33 to 60	42 to 75	50 to 90	62 to 110
Insertion Loss (dB)	1.0	1.0	1.0	1.0	1.2	1.5	1.8
Rejection Band (GHz)	< 14 & > 33	< 20 & > 47	< 25 & > 56	< 29 & > 66	< 38 & > 80	< 45 & > 98	< 56 & > 118
Rejection (dB, Min)	40	40	40	40	40	40	40
Outline Drawing	WT-E-4						

CUSTOM ORDER

Specify Model Number

PFL-WG EF RJ-XX Factory Reserve

WG Size

High End Cut Off Frequency in GHz

Example: To order a WR-28 bandpass filter with 38 GHz high end cut off frequency, 45 dB rejection, specify PFL-283845-XX.

Waveguide Highpass Filters

Bulletin No. PFH

FEATURES

- High rejection
- Low insertion loss
- Frequency up to 110 GHz
- Rugged mechanical construction

APPLICATIONS

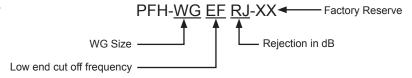
- Lower side band rejection
- Up and down converters
- Transceivers

PFH Series

DESCRIPTION

PFH series waveguide highpass filters are available in major communication frequency and Radar bands. The frequency coverage is up to 110 GHz in seven waveguide bands. These filters are designed to offer sharp cut off and high attenuation in the stop band and low insertion loss in the pass band. The corner frequency is specified at the time of order.

SPECIFICATIONS


Frequency Band	K	Ka	Q	U	V	E	w
Waveguide	WR-42	WR-28	WR-22	WR-19	WR-15	WR-12	WR-10
Frequency Range (GHz)	18 to 26.5	26.5 to 40	33 to 50	40 to 60	50 to 75	60 to 90	75 to 110
Cut off Frequency Range (GHz)	14 to 23	21 to 36	26 to 45	31 to 54	40 to 68	48 to 82	59 to 100
Pass band Loss (dB) ¹	0.6	0.7	0.8	0.8	0.9	1.0	1.0
Stop band Rejection (dB) ¹	45	45	45	45	45	45	45
Outline Drawing	WT-E-3	WT-E-3	WT-E-3	WT-E-3	WT-E-3	WT-E-3	WT-E-3

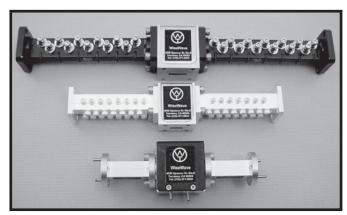
Note:

- 1. The pass band insertion loss and stop band rejection is cut off frequency and filter physical length related. The longer the length, the higher the rejection in the stop bands.
- 2. Other waveguide band highpass filters are available upon request.

HOW TO ORDER

Specify Model Number

Example: To order a WR-28 highpass filter with 35 GHz cut off frequency and 40 dB minimum rejection, specify PHF-283540-XX.


Bulletin No. PDC

FEATURES

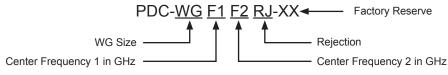
- High Isolation
- Low insertion loss
- Rugged mechanical construction

APPLICATIONS

- Outdoor Units
- Transceivers
- Subsystems

PDC Series

DESCRIPTION


PDC series waveguide diplexers are available in major communication frequency bands. Existing products offer narrow frequency band to cover common North American point-to-point digital radio frequency bands and unlicensed communication bands from 18 to 65 GHz. These diplexers consist of two bandpass filters (BPF) and a circulator. The critical element, BPF, can be constructed with either E plane configuration by using proprietary simulation tool and fabricated by conventional low cost printed circuit techniques or more conventional cavity structure. The diplexers with E-plane configuration require no tuning, which allows low cost, high volume production, while cavity structure offer design flexibility, quick prototyping and higher performance. Typical insertion loss is from 1.0 to 2.0 dB, depending on the channel bandwidth and isolation. The frequency stability is around -0.4 MHz/°C with low cost aluminum housing. Some of products' performance is illustrated as follows. Other frequency bands and performance are available upon request.

SPECIFICATIONS

Item	Model Number	Waveguide Size	Center Freq. (GHz)	Bandwidth (MHz)	Insertion Loss (dB)	Channel Isolation (dB)	VSWR (Typ)
1	PDC-42181940-01	WR-42	17.90/18.90	400	1.5	40	1.25
2	PDC-42181940-11	WR-42	18.20/19.20	400	1.5	40	1.25
3	PDC-42181940-21	WR-42	18.50/19.50	600	1.2	40	1.25
4	PDC-34283140-01	WR-34	27.75/31.15	700	1.2	40	1.25
5	PDC-28373840-01	WR-28	37.00/38.00	350	1.8	40	1.25
6	PDC-28383940-01	WR-28	37.50/38.50	350	1.8	40	1.25
7	PDC-28394040-01	WR-28	38.50/39.50	350	1.8	40	1.25
8	PDC-15586240-01	WR-15	58.00/62.00	500	2.0	40	1.25

HOW TO ORDER

Specify Model Number

Example: To order a WR-22 diplexer with 40GHz for receiver channel and 42 GHz for transmitter channel and rejection 40 dB, specify PDC-22404240-XX.

Bulletin No. PRC & PTW

FEATURES

- Rugged waveguide configuration
- Full band operation
- High performance

APPLICATIONS

- Test benches
- Subsystems
- Prototypes
- Inter connections

PRC & PTW Series

DESCRIPTION

PRC series rectangular to circular waveguide transitions are offered to cover frequency range of 18 to 110 GHz. These transitions are manufactured with electro-forming technique to ensure high mechanical tolerance and surface smoothness. Typical VSWR for these transitions is 1.05:1. The transitions are used for connecting rectangular waveguide to circular waveguide with minimum loss. The outline drawing for these transitions is WT-E-6.

PTW series rectangular waveguide taper transitions are offered to cover frequency range of 18 to 110 GHz. These transitions are manufactured with EDM technique to ensure high mechanical tolerance and ruggedness. Typical VSWR for these transitions is 1.05:1. The transitions are used for smooth transition between different waveguide size with minimum loss. The outline drawing for these transitions is WT-E-6.

HOW TO ORDER

Rectangular to circular waveguide transitions

Specify Model Number

PRC - WG DDD -XX ← Factory Reserve

Rectangular Waveguide Size Diameter in Mils

Example: To order a WR-15 to 0.141" diameter rectangular to circular waveguide transition, specify PRC-15141-XX.

Rectangular taper transitions

Specify Model Number

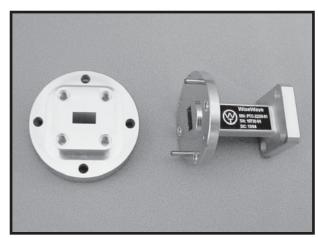
PTW - WG WG L - XX

Factory Reserve

Smaller Waveguide Size Larger Waveguide Size

Example: To order a WR-10 to WR-28 waveguide taper transition, specify PTW-1028L-XX.

Waveguide Flange and Bulkhead Adapters


Bulletin No. PWA & PWK

FEATURES

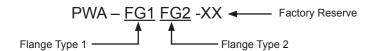
- Rugged waveguide configuration
- Full band operation
- High performance

APPLICATIONS

- Test benches
- Subsystems
- Prototypes
- Inter connections

PWA & PWK Series

DESCRIPTION


PWA series rectangular waveguide flange adapters are offered to cover frequency range of 18 to 110 GHz in seven waveguide bands. These adapters are used for connecting the same size rectangular waveguide with different flange patterns.

PWK series rectangular waveguide bulkhead flange amount adapters are offered to cover frequency range of 18 to 110 GHz in seven waveguide bands. These transitions are manufactured with EDM technique to ensure high mechanical tolerance and ruggedness. The transitions are used for waveguide interface in panel amount equipment.

HOW TO ORDER

Waveguide Flange Adapters

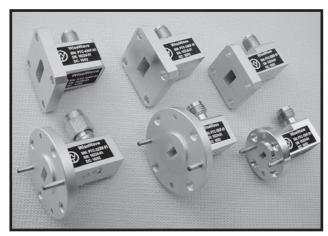
Specify Model Number

Example: To order a UG383/U to UG599/U flange adapter, specify PWA-383599-XX.

Bulkhead Waveguide Adapters

Frequency Band	K	Ka	Q	U	V	E	W
Model Number	PWK-42-01	PWK-28-01	PWK-22-01	PWK-19-01	PWK-15-01	PWK-12-01	PWK-10-01
Freq. Range (GHz)	18-26.5	26.5-40	33-50	40-60	50-75	60-90	75-110
Waveguide Size	WR-42	WR-28	WR-22	WR-19	WR-15	WR-12	WR-10
Flange Type	UG595/U	UG599/U	UG383/U	UG383/U Mod	UG385/U	UG387/U	UG387/U Mod

Waveguide to Coax Adapters


Bulletin No. PTC

FEATURES

- Full waveguide band operation
- Low insertion loss
- ❖ Low VSWR
- Rugged mechanical configuration

APPLICATIONS

- Test setups
- Instrumentation
- Subsystems
- Transceivers

PTC Series

DESCRIPTION

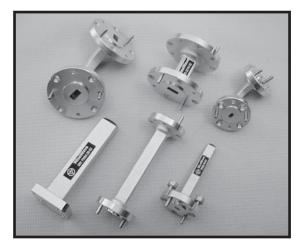
PTC series waveguide to coax adapters are available in nine waveguide bands covering the frequency range of 8.2 to 70 GHz. The adapters covering 8.2 to 60 GHz frequency range are designed for full waveguide band operation, while V band one is for 50 to 70 GHz. These adapters are specially designed with exceptional high performance. SMA male or female connectors are standard coaxial line interfaces for WR-90, WR-75, WR-62 waveguide adapters. 2.92 mm (K) male or female connectors are for WR-42 and WR-28 waveguide adapters, while 2.4 mm male or female connectors are for WR-22 and V male or female connectors are for WR-19 and WR-15 waveguide adapters. The adapters are ideal choices where the waveguide to coaxial transitions are required.

SPECIFICATIONS

Model Number	Frequency (GHz)	Waveguide Size	Coax Connector	Insertion Loss (dB, Max)	Return Loss (dB, Min)	Flange Type	Outline Drawing
PTC-90SF-01	8.2 to 12.4	WR-90	SMA (F)	0.20	20.0	UG39/U	WT-E-5
PTC-90SM-01	8.2 to 12.4	WR-90	SMA (M)	0.20	20.0	UG39/U	WT-E-5
PTC-75SF-01	10.0 to 15.0	WR-75	SMA (F)	0.20	20.0	Square	WT-E-5
PTC-75SM-01	10.0 to 15.0	WR-75	SMA (M)	0.20	20.0	Square	WT-E-5
PTC-62SF-01	12.4 to 18.0	WR-62	SMA (F)	0.25	20.0	UG419/U	WT-E-5
PTC-62SM-01	12.4 to 18.0	WR-62	SMA (M)	0.25	20.0	UG419/U	WT-E-5
PTC-42KF-01	18.0 to 26.5	WR-42	K (F)	0.30	20.0	UG595/U	WT-E-5
PTC-42KM-01	18.0 to 26.5	WR-42	K (M)	0.30	20.0	UG595/U	WT-E-5
PTC-34KF-01	22.0 to 33.0	WR-34	K (F)	0.30	20.0	UG1530/U	WT-E-5
PTC-34KM-01	22.0 to 33.0	WR-34	K (M)	0.30	20.0	UG1530/U	WT-E-5
PTC-28KF-01	26.5 to 40.0	WR-28	K (F)	0.35	20.0	UG599/U	WT-E-5
PTC-28KM-01	26.5 to 40.0	WR-28	K (M)	0.35	20.0	UG599/U	WT-E-5
PTC-222F-01	33.0 to 50.0	WR-22	2.4 mm (F)	0.40	18.0	UG383/U	WT-E-5
PTC-222M-01	33.0 to 50.0	WR-22	2.4 mm (M)	0.40	18.0	UG383/U	WT-E-5
PTC-19VF-01	40.0 to 60.0	WR-19	V (F)	0.40	17.0	UG383/U-M	WT-E-5
PTC-19VM-01	40.0 to 60.0	WR-19	V (M)	0.40	17.0	UG383/U-M	WT-E-5
PTC-15VF-01	50.0 to 70.0	WR-15	V (F)	0.50	16.0	UG385/U	WT-E-5
PTC-15VM-01	50.0 to 70.0	WR-15	V (M)	0.50	16.0	UG385/U	WT-E-5

Note: The adapters with different type of coax interface and flange are available per request.

Waveguide Sections, Bends, Twists and Loads


Bulletin No. PWS, PWE, PWH, PWM, PWT

FEATURES

- Rugged waveguide configuration
- Full band operation
- Low cost

APPLICATIONS

- Test benches
- Subsystems
- Prototypes

PWS, PWE, PWH, PWM & PWT Series

DESCRIPTION

PWS, **PWE**, **PWH**, **PWM** and **PWT** series offered various waveguide components to cover frequency range of 18 to 110 GHz in seven waveguide bands. Other frequency bands are available per request.

Straight waveguide sections (**PWS**) offer the inter-connections between the waveguide ports and are available in 1" to 8" standard length in 1" incremental as well as customer-specified lengths.

Waveguide bends (**PWE**) change the E plane direction in the waveguide assembly. While standard version offers 90° bend, the special bend angle up to 180° are available per request.

Waveguide bends (**PWH**) change the H plane direction in the waveguide assembly. While standard version offers 90° bend, the special bend angle up to 180° are available per request.

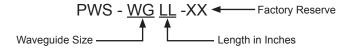
Waveguide termination loads (**PWM**) are useful when a matched port termination is required. The standard termination loads offer less than 1.10 VSWR and up to 10.0 watts power handling. Higher power handling versions are offered as custom-specified option.

Waveguide twists (**PWT**) allow changing the orientation of the waveguide port and are available with the twisting angle of 45° or 90°.

WAVEGUIDE SPECIFICATIONS

Waveguide Band	К	Ka	Q	U	V	E	w
Frequency Range (GHz)	18 to 26.5	26.5 to 40	33 to 50	40 to 60	50 to 75	60 to 90	75 to 110
Waveguide Size	WR-42	WR-28	WR-22	WR-19	WR-15	WR-12	WR-10
Flange Pattern	UG595/U	UG599/U	UG383/U	UG383/U	UG385/U	UG387/U	UG387/U
Inner Dimension (A x B, Inches)	0.420 x 0.170	0.280 x 0.140	0.224 x 0.112	0.188 x 0.094	0.148 x 0.074	0.122 x 0.061	0.100 x 0.050

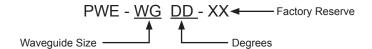
Note: Contact factory for other waveguide band needs.


Waveguide Sections, Bends, Twists and Loads

Bulletin No. PWG

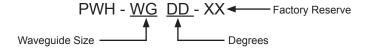
HOW TO ORDER

Straight waveguide sections


Specify Model Number

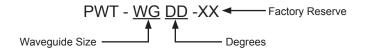
Example: To order a 2" long, WR-15 straight waveguide section, specify PWS-1502-XX.

Waveguide E plane bends


Specify Model Number

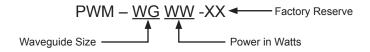
Example: To order a WR-28, E-plane, 30° waveguide bend, specify PWE-2830-XX.

Waveguide H plane bends


Specify Model Number

Example: To order a WR-28, E-plane, 30° waveguide bend, specify PWE-2830-XX.

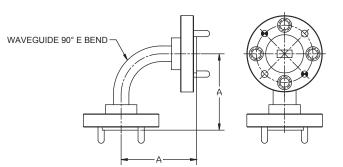
Waveguide twists

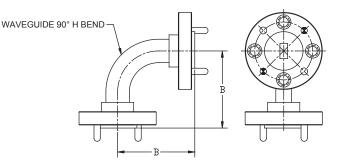

Specify Model Number

Example: To order a 45°, 1" long, WR-12 waveguide twist, specify PWT-120145-XX.

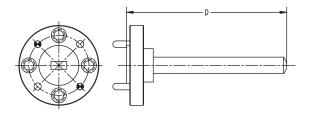
Waveguide termination loads

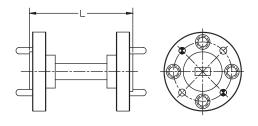
Specify Model Number

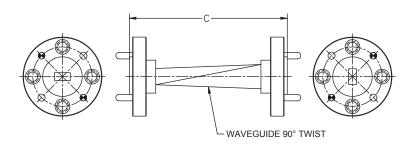

Example: To order a WR-42 waveguide, 2 Watts termination load, specify PWM-4202-XX.


Waveguide Sections, Bends, Twists and Loads

Bulletin No. PWG


Outline: WT-E-A1


Outline: WT-E-A2


Outline: WT-E-A3

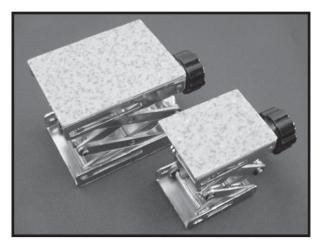
Outline: WT-E-A4

Outline: WT-E-A5

Waveguide Band	Frequency Range (GHz)	Waveguide Size	Flange Pat- tern	E-Bends A(Inch)	H-Bends B(Inch)	Twist C(Inch)	Loads D(Inch)	Section L(Inch)*
Х	8-12.4	WR-90	UG39/U	2.00	2.00	3.00	3.00	2.0
WR-75	10-15	WR-75	Square	1.75	1.75	2.75	2.75	2.0
Ku	12-18	WR-62	UG419/U	1.50	1.50	2.50	2.50	2.0
K	18-26.5	WR-42	UG595/U	1.25	1.25	2.50	2.50	1.0
Ka	26.5-40	WR-28	UG599/U	1.00	1.00	2.00	2.00	1.0
Q	33-50	WR-22	UG383/U	1.00	1.00	2.00	2.00	1.0
U	40-60	WR-19	UG383/U-M	1.00	1.00	1.50	2.00	1.0
V	50-75	WR-15	UG385/U	0.75	0.75	1.50	1.50	1.0
Е	60-90	WR-12	UG387/U	0.75	0.75	1.25	1.50	1.0
W	75-110	WR-10	UG387/U-M	0.75	0.75	1.25	1.50	1.0
	Outline Dr	awing		WT-E-A1	WT-E-A2	WT-E-A5	WT-E-A3	WT-E-A4

^{*} The length shown is for standard model. Customer may specify the length at time of inquiry.

The flange pattern shown is for illustration purpose. Refer to standard waveguide flange pattern for details.


Bulletin No. WTJ

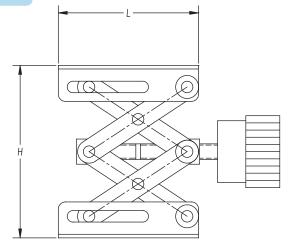
FEATURES

- Rugged configuration
- Smooth adjustment
- Top and bottom plate skid pads
- Four size selections

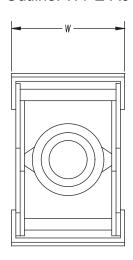
APPLICATIONS

- Laboratory setup supporting
- Waveguide system supporting

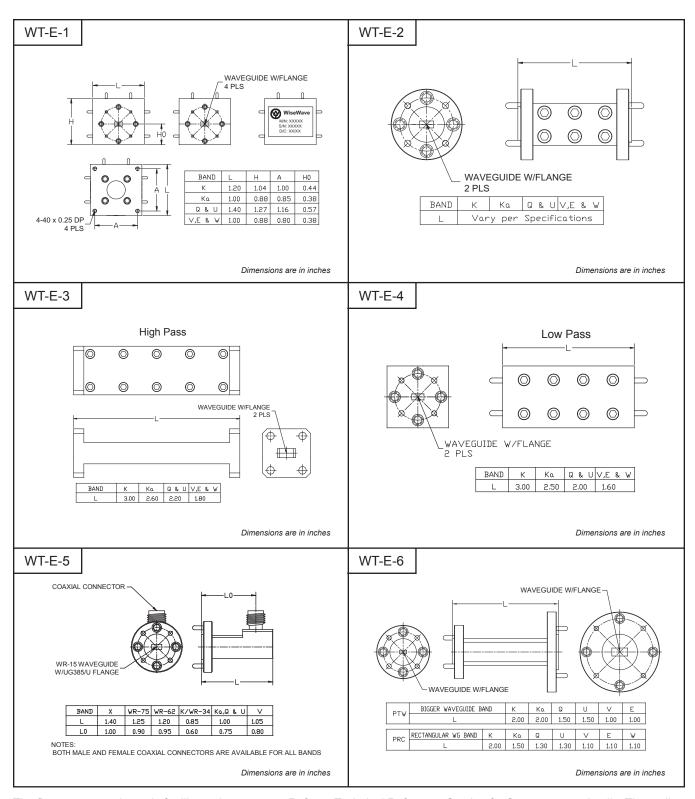
WTJ Series


DESCRIPTION

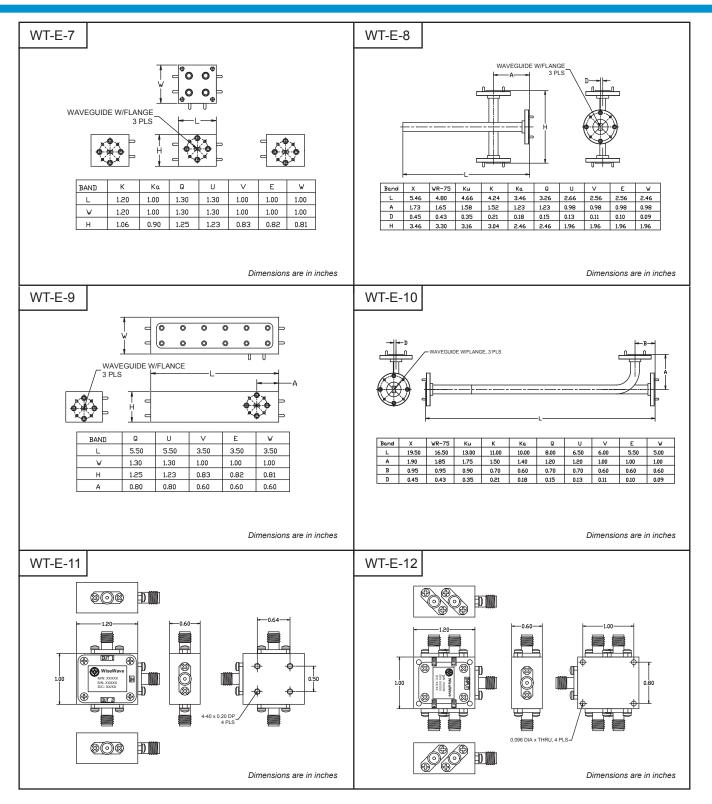
WTJ series jacks are offered in four table size to provide total flexibility of waveguide or module supporting or positioning requirements in the laboratory environment. These jacks are engineered for smooth and continuous height adjustment through their height range. They are constructed with chromed steel and anti-skid pads to offer stable, slipping and scratch free support.


SPECIFICATIONS

Model Number	WTJ-050040-02	WTJ-075055-02	WTJ-100075-02	WTJ-140100-02
Table Size (L x W)	50 x 40 mm	75 x 55 mm	100 x 75 mm	140 x 100 mm
Elevation Height (H)	37 - 93 mm	37 - 138 mm	43 - 182 mm	52 - 255 mm

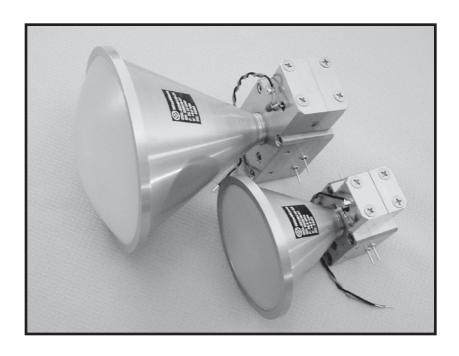


Outline: WT-E-A6



The flange pattern shown is for illustration purpose. Refer to Technical Reference Section for flange pattern details. The outline drawings shown are standard versions. Contact factory for your specific package requirements.

Passive Component Outline Drawings #2

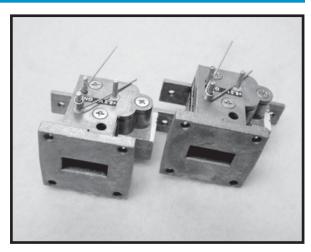


The flange pattern shown is for illustration purpose. Refer to Technical Reference Section for flange pattern details. The outline drawings shown are standard versions. Contact factory for your specific package requirements.

8. Subsystems

Motion Detector Modules	8-80
Doppler Sensor Heads	8-81
Ranging Sensor Heads	8-83
Sensor Heads Application Notes	8-85
Doppler Ranging Sensor Heads	8-88
Doppler Ranging Sensor Heads Outline Drawings	8-90
Radar Target Simulators	8-91
Frequency Extenders	8-92
Scalar Network Analyzer Extenders	8-93
Noise Figure and Gain Test Set	8-94
Sub-assemblies	8-95

Motion Detector Modules


Bulletin No. SMD

FEATURES

- High reliability
- High sensitivity
- CW and pulse operation
- Low harmonic emission
- Compact size
- Low cost and volume production
- Meet FCC, PTT, FTZ and DTI regulations

APPLICATIONS

- Intrusion alarm
- Automatic door opener
- Speed measurement
- Contact less vibration measurement
- Traffic signal actuator
- Automatic illumination system

SMD Series

DESCRIPTION

SMD series K band **Motion Detector Modules** are designed for **short-range** motion/speed detection where the cost is essential. The modules are constructed with a T/R diplexer, a single ended mixer and a frequency and power adjustable Gunn diode oscillator. The module uses the low cost die-cast housing to further reduce the manufacturing cost while maintain a ridged mechanical configuration. The integrated design offers compact size and ease system integration. The dual channel version is available per request.

SPECIFICATIONS

	Typical Specifications	
Parameters	CW (Model No.: SMD-240912CW-02)	Pulse (Model No.: SMD-240912PS-02)
RF frequency	24.150 GHz	24.150 GHz
Transmitter output power	+8.5 dBm (typical)	+8.5 dBm (typical)
Receiver conversion loss	12 dB (typical)	12 dB (typical)
IF bandwidth	DC to 100 MHz (minimum)	DC to 100 MHz (minimum)
Operation Voltage	4.5 to 5.5 Vdc	6 to 8.5 Vdc, 2% Duty Cycle
Operating Current	90 to 160 mA	N/A
Detector Voltage	0.3 (Volts) into 2 K-ohm Load	0.3 (Volts) into 2 K-ohm Load
ΔΕ/ΔΤ	-0.50 MHz/°C (maximum)	-0.50 MHz/°C (maximum)
ΔΡ/ΔΤ	-0.04 dB/°C (maximum)	-0.04 dB/°C (maximum)
Operation temperature	-40 to +85 °C	-40 to +85 °C
Storage temperature	-50 to + 90 °C	-50 to + 90 °C

Bulletin No. SRF

FEATURES

- High sensitivity
- ❖ Low 1/f noise
- Circular polarized waveform
- Low harmonic and spurious emission
- Temperature and vibration qualified
- Compact size
- Low cost and volume production

APPLICATIONS

- Automotive Radar
- Doppler Radar
- Directional sensor
- Long range motion detector

SRF Series

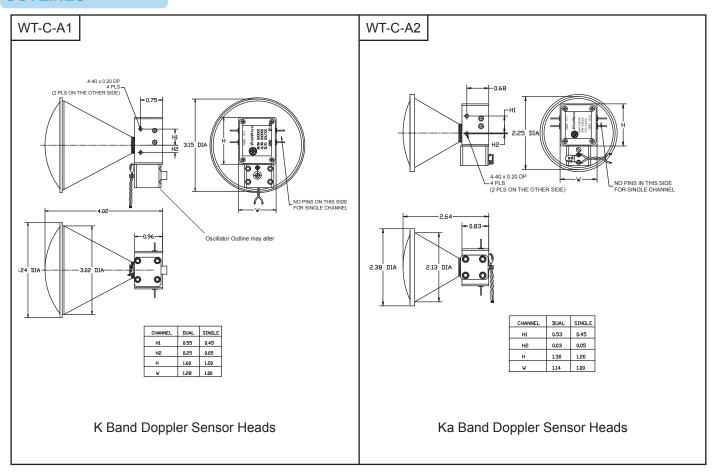
DESCRIPTION

SRF series Single and Dual Channel Doppler Sensor Heads are designed for <u>long range</u> motion/speed/directional detection where the sensitivity is essential. The sensors are constructed with a high performance horn antenna or horn-lens antenna, a linear to circular polarizer and T/R diplexer, a balanced mixer (I/Q mixer for dual channel version) and a high performance Gunn diode oscillator or dielectric resonator oscillator/multiplier chain. The low 1/f noise mixer diodes and high performance oscillator enhance Doppler detection at low IF frequency and circular polarization waveform improves reception ability for various Radar targets. The sensors are offered with single or dual channel version. The dual channel version provides target moving direction (approaching or receding) information of the target while detecting speed.

Standard products are offered at 24.15 GHz, 35 GHz and 76.5 GHz, while other frequency bands are available upon request.

SPECIFICATIONS

Typical Specifications (Single Channel)						
Parameters / Model #	SRF-24120610-01	SRF-35120610-01	SRF-77120910-01			
RF frequency	24.150 GHz	35.500 GHz	76.500 GHz			
Transmitter output power	+10 dBm (typical)	+10 dBm (typical)	+10 dBm (typical)			
Receiver conversion loss	6 dB (typical)	6 dB (typical)	9 dB (typical)			
IF bandwidth	DC to 100 MHz (minimum)	DC to 100 MHz (minimum)	DC to 100 MHz (minimum)			
Antenna 3 dB beamwidth	12 degrees (typical)	12 degrees (typical)	12 degrees (typical)			
Antenna side lob level	-20 dB (maximum)	-20 dB (maximum)	-20 dB (maximum)			
Polarization	right hand circular	right hand circular	right hand circular			
Spurious and harmonics	-16 dBc (maximum)	-16 dBc (maximum)	-16 dBc (maximum)			
ΔΕ/ΔΤ	-0.20 MHz/°C (maximum)	-0.40 MHz/°C (maximum)	-4.0 MHz/°C (typical)			
ΔΡ/ΔΤ	-0.03 dB/°C (maximum)	-0.04 dB/°C (maximum)	-0.04 dB/°C (typical)			
DC bias	+5.5 V / 250 mA (typical)	+5.5 V / 350 mA (typical)	+5.5 V / 650 mA (typical)			
Operation temperature	-40 to +85 °C	-40 to +85 °C	-40 to +85 °C			
Outline drawing	WT-C-A1	WT-C-A2	Consult factory			



Bulletin No. SRF

Typical Specifications (Dual Channel)					
Parameters / Model #	SRF-24120910-D1	SRF-35121010-D1	SRF-77121210-D1		
RF frequency	24.150 GHz	35.500 GHz	76.500 GHz		
Transmitter output power	+10 dBm (typical)	+10 dBm (typical)	+10 dBm (typical)		
Receiver conversion loss	9 dB (typical)	10 dB (typical)	12 dB (typical)		
IF bandwidth	DC to 100 MHz (minimum)	DC to 100 MHz (minimum)	DC to 100 MHz (minimum)		
I/Q Channel Phase	90 °± 10 °	90 °± 10 °	90 °± 20 °		
Antenna 3 dB beamwidth	12 degrees (typical)	12 degrees (typical)	12 degrees (typical)		
Antenna side lob level	-20 dB (maximum)	-20 dB (maximum)	-20 dB (typical)		
Polarization	right hand circular	right hand circular	right hand circular		
Spurious and harmonics	-16 dBc (maximum)	-16 dBc (maximum)	-16 dBc (maximum)		
ΔΕ/ΔΤ	-0.20 MHz/°C (maximum)	-0.40 MHz/°C (maximum)	-4.0 MHz/°C (typical)		
ΔΡ/ΔΤ	-0.03 dB/°C (maximum)	-0.04 dB/°C (maximum)	-0.04 dB/°C (typical)		
DC bias	+5.5 V / 250 mA (typical)	+5.5 V / 350 mA (typical)	+5.5 V / 650 mA (typical)		
Operation temperature	-40 to +85 °C	-40 to +85 °C	-40 to +85 °C		
Outline drawing	WT-C-A1	WT-C-A2	Consult factory		

OUTLINES

Bulletin No. SRR

FEATURES

- High sensitivity
- ❖ Low 1/f noise
- Circular polarized waveform
- Low harmonic and spurious emission
- Temperature and vibration qualified
- Compact size
- Low cost and volume production

APPLICATIONS

- Automotive Radar
- Ranging Radar

SRR Series

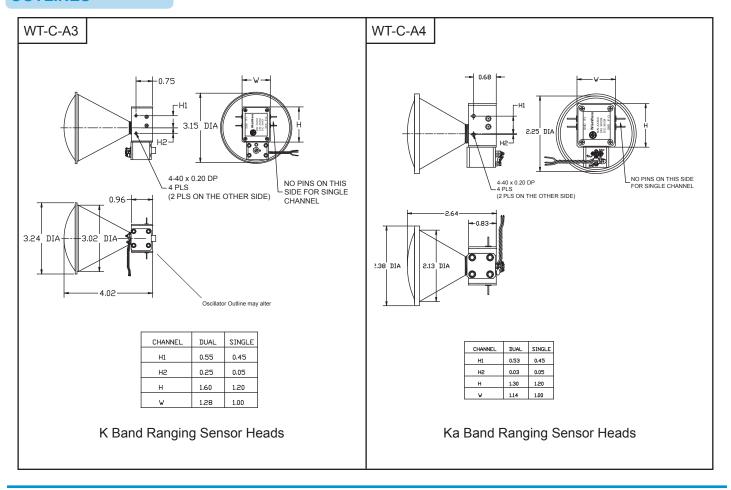
DESCRIPTION

SRR series ranging sensor heads are designed for <u>long range</u> distance detection where the sensitivity is essential. The sensors are constructed with a high performance horn antenna or horn-lens antenna, a linear to circular polarizer and T/R diplexer, a balanced mixer and a high performance varactor tuned Gunn oscillator or dielectric resonator VCO/multiplier chain. The low 1/f noise mixer diodes and high performance oscillator enhance the detection sensitivity at low IF frequency and circular polarization waveform improves reception ability for various Radar targets. The standard models are offered with single channel output and the dual channel version are available per request.

Standard products are offered at 24.15 GHz, 35.0 GHz and 76.5 GHz, while other frequency bands are available upon request.

SPECIFICATIONS

Parameters / Model #	SRR-24120610-01	SRR-35120610-01	SRR-77120910-01
RF frequency	24.150 GHz	35.500 GHz	76.500 GHz
Varactor Tuning Range	50 MHz (Min) / 0 to +20 V (Typ.)	100 MHz (Min) / 0 to +20 V (Typ.)	250 MHz (Min) / 0 to +20 V (Typ.)
Transmitter output power	+10 dBm (typical)	+10 dBm (typical)	+10 dBm (typical)
Receiver conversion loss	6 dB (typical)	6 dB (typical)	9 dB (typical)
IF bandwidth	DC to 100 MHz (minimum)	DC to 100 MHz (minimum)	DC to 100 MHz (minimum)
Antenna 3 dB beamwidth	12 degrees (typical)	12 degrees (typical)	12 degrees (typical)
Antenna side lob level	-20 dB (maximum)	-20 dB (maximum)	-20 dB (maximum)
Polarization	right hand circular	right hand circular	right hand circular
Spurious and harmonics	-16 dBc (maximum)	-16 dBc (maximum)	-16 dBc (maximum)
ΔΕ/ΔΤ	-0.20 MHz/°C (maximum)	-0.40 MHz/°C (maximum)	-4.0 MHz/°C (typical)
ΔΡ/ΔΤ	-0.03 dB/°C (maximum)	-0.04 dB/°C (maximum)	-0.04 dB/°C (typical)
DC bias	+5.5 V / 250 mA (typical)	+5.5 V / 350 mA (typical)	+5.5 V / 650 mA (typical)
Operation temperature	-40 to +85 °C	-40 to +85 °C	-40 to +85 °C
Outline drawing	WT-C-A3	WT-C-A4	Consult factory



Bulletin No. SRR

Typical Specifications (Dual Channel)					
Parameters / Model #	SRR-24120910-D1	SRR-35121010-D1	SRR-77121210-D1		
RF frequency	24.150 GHz	35.500 GHz	76.500 GHz		
Varactor tuning range	50 MHz (Min) 0 to +20 V (Typ.)	100 MHz (Min) 0 to +20 V (Typ.)	250 MHz (Min) 0 to +20 V (Typ.)		
Transmitter output power	+10 dBm (typical)	+10 dBm (typical)	+10 dBm (typical)		
Receiver conversion loss	9 dB (typical)	9 dB (typical)	12 dB (typical)		
IF bandwidth	DC to 100 MHz (minimum)	DC to 100 MHz (minimum)	DC to 100 MHz (minimum)		
Antenna 3 dB beamwidth	12 degrees (typical)	12 degrees (typical)	12 degrees (typical)		
Antenna side lob level	-20 dB (maximum)	-20 dB (maximum)	-20 dB (maximum)		
Polarization	right hand circular	right hand circular	right hand circular		
Spurious and harmonics	-16 dBc (maximum)	-16 dBc (maximum)	-16 dBc (maximum)		
ΔΕ/ΔΤ	-0.20 MHz/°C (maximum)	-0.40 MHz/°C (maximum)	-4.0 MHz/°C (typical)		
ΔΡ/ΔΤ	-0.03 dB/°C (maximum)	-0.04 dB/°C (maximum)	-0.04 dB/°C (typical)		
DC bias	+5.5 V / 250 mA (typical)	+5.5 V / 350 mA (typical)	+5.5 V / 650 mA (typical)		
Operation temperature	-40 to +85 °C	-40 to +85 °C	-40 to +85 °C		
Outline drawing	WT-C-A3	WT-C-A4	Consult factory		

OUTLINES

Sensor Heads Application Notes

Bulletin No. SRF & SRR

Ducommun offers three types of microwave and millimeterwave sensor heads. They are **Doppler Sensor Heads**, **Directional Doppler Sensor Heads** (SRF Series) and **Ranging Sensor Heads** (SRR Series). The main objectives of the application notes are to explain the basic principles of Doppler Radar and Ranging (Distance) Radar and how Ducommun's sensor heads should be implemented to configure such Radar systems.

Doppler Radar

It is well known that **Doppler Radar** is widely used for speed measurement. The principle behind the Doppler Radar is the frequency shift of a microwave signal bounced back by a moving object. The resultant frequency shift is known as **Doppler Frequency Shift**, which is given by the following equation

$F_d = 2V (Fo/C) Cos (\theta)$

Where:

Fo is the transmitter frequency (Hertz). **C** is the speed of light, which is 3×10^8 (meter/sec). **V** is the speed of the target (meter/sec). θ is the angle between the radar beam and the moving target (in degrees) as shown in Fig. 1.

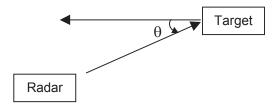


Figure 1. Doppler Shift

When moving target moves perpendicular to the radar beam, the Fd equals 0, which indicates no Doppler shift. On the other hand, the F_d is equal to 2V(Fo/C) when the target moves parallel to the radar beam or if $\bf q$ is real small (0 to 10 degrees).

SRF series single channel Doppler sensor heads offered by Ducommun are designed for <u>long range</u> Doppler Radar application where detection sensitivity is essential.

The simplified block diagram of a Doppler Radar formed by using Ducommun's single channel sensor head is shown in Fig. 2. A high quality DC power supply for Gunn oscillator bias, a low noise IF amplifier and DSP circuitry are the minimum requirements for a system designer to realize such a radar system. In addition, the moving target radar cross section, detection distance and target speed are the main factors in consideration when specifying the transmitting power, antenna gain and IF frequency bandwidth of the sensor head. The example of the IF frequency range of a 24.15 GHz and 76.5 GHz Doppler radar at various speeds is shown in the following table.

Transmitting Freq. (GHz)	24.15		
Speed (Km/Hr.)	10	80	200
IF (Hz)	224	1,790	4,475
Transmitting Freq. (GHz)	76.50		
Speed (Km/Hr.)	10	80	200
IF (Hz)	709	5,670	14,176

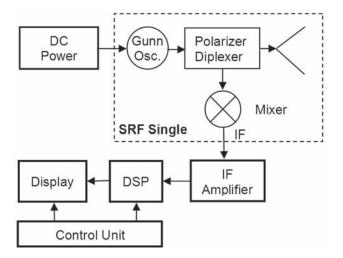


Figure 2. Simplied Doppler Radar

Doppler Directional Radar

In certain applications, one not only has to know the target speed, but also the target moving directions, i.e., whether the target is approaching to the radar or receding from the Radar. The examples for such applications are the law enforcement radar systems used by police officer or door openers in the building entrance. Also, such radar systems are often used for distinguishing vibrating targets, fan rotations or curtain movements caused by the wind from a real intrusion in the security system.

The implement of the directional information is realized by adding an additional mixer to the single channel sensor head with a 90 degrees phase difference. The mixer used in the directional sensor is sometimes known as phase detector or I/Q mixer. The phase relationship between two mixers is that the first mixer will lead the second, or the phase shift is positive if the target is approaching the radar, while the phase will lag if the target is receding from the radar.

SRF series dual channel Doppler sensor heads offered by Ducommun are designed for <u>long range</u> Directional Doppler Radar applications where detection sensitivity is essential.

The simplified block diagram of a Directional Doppler Radar achieved by using Ducommun's dual channel sensor head is shown in the Fig. 3. In a similar manner, a high quality DC power supply for Gunn oscillator bias, a low noise IF amplifier and DSP circuitry are the minimum requirements for a system designer to realize such a radar system.

Ranging (Distance) Radar

In many applications, one has to know not only the speed of a moving target, but also the range or distance between the moving or stationary target and the radar. In this case, a Frequency Modulation Continuos Waveform (FMCW) technique may be used in the sensor head to realize the ranging radar.

Implementing the FMCW technique in the sensor head is to replace the fixed tuned oscillator with a Varactor or voltage tuned one.

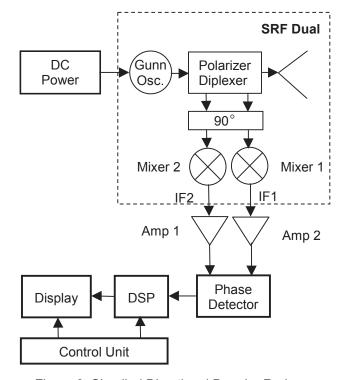


Figure 3. Simplied Directional Doppler Radar

SRR series dual channel Doppler sensor heads offered by Ducommun are designed for <u>long range</u> FMCW Radar application.

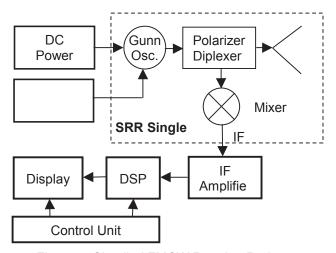


Figure 4. Simplied FMCW Ranging Radar

The simplified block diagram of an FMCW Radar formed by using Ducommun's single channel sensor head is shown in the Fig. 4. In a similar manner, a high quality DC power supply for Gunn oscillator bias, a voltage modulator, a low noise IF amplifier and DSP circuitry are the minimum requirements for a system designer to realize such a radar system. The range information can be extracted from the frequency difference between the transmitted and returned signal at distance R, the signal transit time (ΔT) and the frequency modulation rate (N). The idea is briefly illustrated in the Fig. 5. The detail is explained as follow. At time T1, the signal is transmitted and fed to the mixer at frequency F1. The F1 returned from the target at distance R is received at T2, while the transmitting and LO frequency is F2. With known ramping rate (N), one can find the transit time by using

$\Delta T = (Ft-Fr)/N$,

where **Ft** and **Fr** are the IF frequency at mixer IF port in Hz and **N** is Hz/sec.

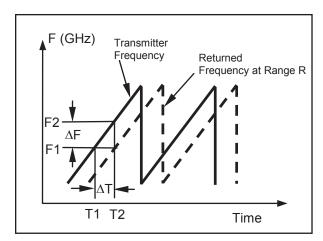


Figure 5. FMCW Radar Frequency vs. Time

Therefore, the range (distance) is given by

$R = (\Delta T \times C)/2$

Where $\bf C$ is the speed of light, which is 3 x 10 8 (meter/sec).

The range accuracy is governed by the ramp linearity.

From the description above, an FMCW ranging radar can detect not only the stationary target, but also the moving target. Therefore, an FMCW radar is a Doppler Ranging Radar.

Ranging (Distance) Radar with Directional Doppler Feature

With a similar idea, Ducommun's **SRR series** Dual channel sensor head offers ranging capacity with directional features. The simplified block diagram is shown in Fig. 6.

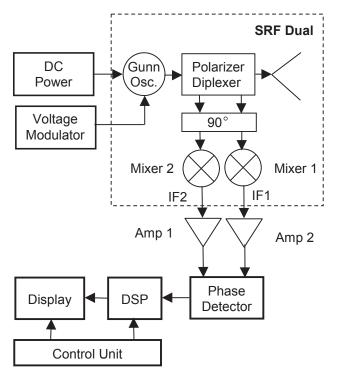


Figure 6. Simplied FMCW Ranging Radar with Directional Doppler Feature

Conclusions

- 1. Ducommun's **SRF and SRR series** sensor heads offer total solutions for **Long Range** Radar system requirements.
- 2. Ducommun's **SRF and SRR series** sensor heads can be tailored to various transmitting power levels and antenna gains.

Doppler Ranging Sensor Heads

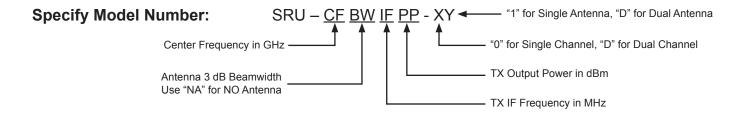
Bulletin No. SRU

FEATURES

- High sensitivity
- ❖ Low 1/f noise
- Circular polarized waveform
- Low harmonic and spurious emission
- Temperature and vibration qualified
- Compact size
- Low cost and volume production

APPLICATIONS

- Automotive Radar
- Doppler Ranging Radar


SRU Series

DESCRIPTION

SSRU series ranging sensor heads are designed for <u>long range</u> distance detection where the sensitivity is essential. The **SRU** series ranging sensors are used for <u>moving target</u> (where Doppler shift is presented) distance detection. The technology key is to utilize a single side band up-converter (modulator) to generate a second frequency in addition to its master frequency. By comparing the returned signals from the target caused by these two frequencies, the ranging (distance) information of the target can be extracted.

Four configurations are offered for special applications. The single channel versions are used for <u>speed</u> and <u>distance</u> sensing only while dual channel versions are offered for <u>speed</u>, <u>distance</u> and <u>direction</u> sensing. In addition, dual antenna versions are offered for high power version to eliminate the limited TX/RX isolation problems due to the diplexer. The single antenna versions are constructed with a high performance horn antenna or lens corrected antenna, a linear to circular polarizer and T/R diplexer, a single side band up-converter or modulator, a balanced mixer or an I-Q mixer and an amplifier and a high performance Gunn oscillator. The deviation of the dual antenna versions is that an additional antenna is used and no diplexer is required. The low 1/f noise mixer diodes and high performance oscillator enhance the detection sensitivity at low IF frequency and circular polarization waveform improves reception ability for various Radar targets.

Standard products are offered at 35.0 GHz, while other frequency bands are available upon request.

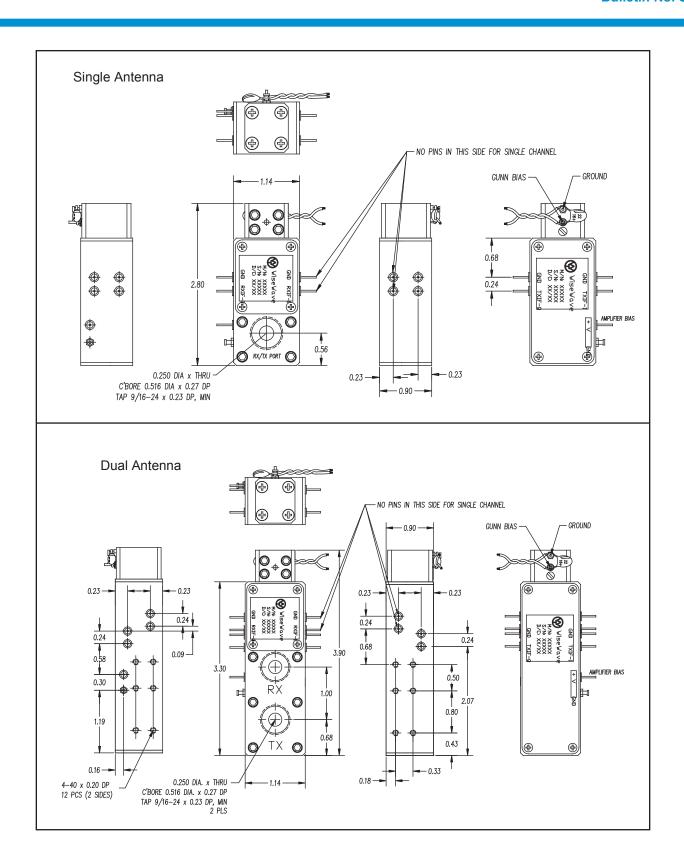
Example: A dual channel, dual antenna sensor with center frequency 35 GHz, antenna beamwidth 12 degrees, TX input frequency 2 MHz and output power 30 dBm, the model number is SRU-35120230-DD.

Bulletin No. SRU

Doppler Ranging Sensor Heads

STANDARD MODELS

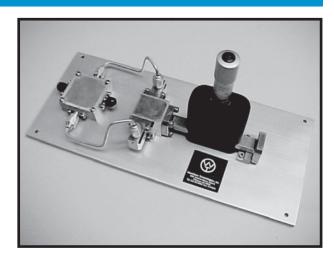
Typical Specifications (Single Channel)								
Parameters	SRU-35NA9910-01	SRU-35NA9927-0D						
RF Frequency	35.000 GHz	35.000 GHz						
Transmitter output power	+10 dBm (typical)	0 to 100 MHz (Min)						
Transmitter IF Bandwidth	0 to 100 MHz (Min)	12 dB						
Receiver conversion loss	6 dB (typical)	6 dB (typical)						
RX IF bandwidth	DC to 100 MHz (minimum)	DC to 100 MHz (minimum)						
Antenna 3 dB beamwidth	To be specified by customer	To be specified by customer (30 Degrees or wider)						
Antenna side lob level	To be specified by customer	To be specified by customer						
Polarization	Right hand circular	Right hand circular						
TX and RX isolation	20 dB (minimum)	80 dB (minimum)						
ΔΕ/ΔΤ	-0.40 MHz/∆C (maximum)	-0.40 MHz/∆C (maximum)						
ΔΡ/ΔΤ	-0.04 dB/∆C (maximum)	-0.04 dB/∆C (maximum)						
Oscillator DC bias	+5.0 V / 250 mA (typical)	+5.0 V / 250 mA (typical)						
Amplifier DC bias	+8.0 V / 250 mA (typical)	+8.0 V / 650 mA (typical)						
Operation temperature	-40 to +85 ∆C	-40 to +85 ∆C						


Typical Specifications (Dual Channel)							
Parameters	SRU-35NA9910-D1	SRU-35NA9927-DD					
RF Frequency	35.000 GHz	35.000 GHz					
Transmitter output power	+10 dBm (typical)	+27 dBm (typical)					
Transmitter IF Bandwidth	0 to 100 MHz (Min)	0 to 100 MHz (Min)					
Receiver conversion loss	10 dB (typical)	10 dB (typical)					
RX IF bandwidth	DC to 100 MHz (minimum)	DC to 100 MHz (minimum)					
Antenna 3 dB beamwidth	To be specified by customer	To be specified by customer (30 Degrees or wider)					
Antenna side lob level	To be specified by customer	To be specified by customer					
Polarization	Right hand circular	Right hand circular					
TX and RX isolation	20 dB (minimum)	80 dB (minimum)					
ΔF/ΔΤ	-0.40 MHz/∆C (maximum)	-0.40 MHz/∆C (maximum)					
ΔΡ/ΔΤ	-0.04 dB/∆C (maximum)	-0.04 dB/∆C (maximum)					
Oscillator DC bias	+5.0 V / 250 mA (typical)	+5.0 V / 250 mA (typical)					
Amplifier DC bias	+8.0 V / 250 mA (typical)	+8.0 V / 650 mA (typical)					
Operation temperature	-40 to +85 ∆C	-40 to +85 ∆C					

Note: The standard model is offered with out antenna. Specify the antenna by type, 3 dB beamwidth and gain. The output power other than shown is available. Consult factory for your detailed requirements.

Doppler Ranging Sensor Heads Outline Drawings

Bulletin No. SRU



FEATURES

- Low routing loss
- High image rejection
- Separate I/Q input ports
- Low harmonic and spurious emission
- Circular or rectangular waveguide interface

APPLICATIONS

- Radar target simulator
- Single side band modulation
- Forward and backward moving object simulator

Radar Target Simulators

SSA Series

DESCRIPTION

SSA series Radar target simulators is a single side band (SSB) modulators, which can simulate the moving Radar target for Doppler Radar system testing. The simulator can eliminate expensive and time consuming field test for most Doppler/speed Radar manufacturers. The modulators are available in major Doppler Radar frequency bands, such as K band (24.15 GHz), Ka band (35 GHz), V band (60 GHz), and W band (77 GHz and 94 GHz).

The simulators are capable of simulating the approching and receding moving target by varying the relative phase of I and Q channel audio input signals, the speed of the target by adjusting the audio input frequency and the size and/or distance of the target by adjusting the attenuator value.

The existing product specifications are illustrated as following. Other frequency bands are available up request.

SPECIFICATIONS

Typical Specifications (Single Channel)									
Parameters	SSA-4212-XX	SSA-2812-XX	SSA-1513-XX	SSA-1214-XX	SSA-1015-XX				
Frequency (GHz)	24.150	35.50	60.00	76.50	94.00				
Bandwidth (MHz)	+/- 50	+/- 75	+/- 100	+/- 100	+/- 100				
Routing Loss (dB)	12 dB	12 dB	13 dB	14 dB	15 dB				
Image Rejection (dBc)	-20	-20	-20	-20	-20				
Attenuation Level (dB)*	30	30	30	30	30				
I/Q Driven Current (mA)	10	10	10	10	10				
RF Connector	WR-42 or Circular	WR-28 or Circular	WR-15 or Circular	WR-10 or Circular	WR-10 or Circular				
I/Q Connectors	SMA (F)								
Temperature Range	0 to +50°C								

^{*} Note: 60-dB round trip.

Frequency Extenders

Bulletin No. SFE

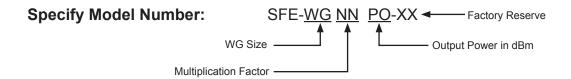
FEATURES

- High output power
- Full waveguide bandwidth
- Extends MW frequencies to MMW bands
- Output frequency up to 110 GHz

APPLICATIONS

- Automatic test set
- Bench top test set
- Local oscillators
- Swept frequency sources

SFE Series


DESCRIPTION

SFE series of frequency extenders combine high performance millimeterwave amplifiers, passive or active multipliers and filters to extend the low frequency sweepers, such as HP 83550B or Agilent 83751B, to extreme clean and low cost millimeterwave sources. The frequency extenders cover the output frequency range of 26.5 to 110 GHz in six waveguide bands. The typical input power for these standard units are rated at + 10.0 dBm while the output power up to 20 dBm is available. The SMA (F) coaxial connector is equipped for input and standard waveguide for output interface. The dimension of the standard products is measured as 4.20" (W) x 6.15" (L) x 2.68" (H).

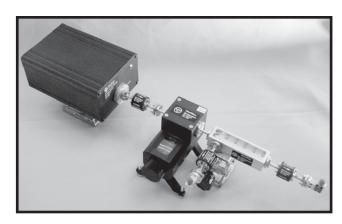
STANDARD PRODUCT SPECIFICATIONS

Model Number	Output Freq. (GHz)	Multiplying Factor	Input Freq. (GHz)	Output Power (dBm, Min)	Input Power (dBm, Typ.)	Output Waveguide	Bias (V/mA)
SFE-280208-01	26.5 - 40.0	X 2	13.25 - 20.0	8.0	+3.0	WR-28	+8 / 200
SFE-280220-01	26.5 - 40.0	X 2	13.25 - 20.0	20.0	+3.0	WR-28	+8 / 600
SFE-220305-01	33.0 - 50.0	X 3	11.00-16.67	5.0	+3.0	WR-22	+8 / 200
SFE-190305-01	40.0 - 60.0	X 3	13.33 - 20.0	5.0	+3.0	WR-19	+8 / 200
SFE-150405-01	50.0 - 75.0	X 4	12.5 - 18.75	3.0	+3.0	WR-15	+8 / 600
SFE-120600-01	60.0 - 90.0	X 6	10.00 - 15.00	0.0	+3.0	WR-12	+8 / 600
SFE-100600-01	75.0- 110.0	X 6	12.50 - 18.33	-3.0	+3.0	WR-10	+8 / 600
Temperatu	re Range	0 to +50°C					

CUSTOM ORDER

Example: To order a Quadriplier with WR-15 waveguide with 15 dBm output power, specify SFE-150415-XX.

Scalar Network Analyzer Extenders


Bulletin No. SNA

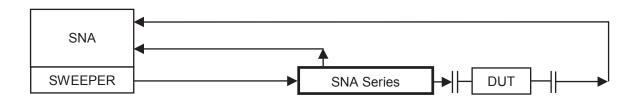
FEATURES

- High output power
- Full waveguide bandwidth
- Extend MW SNA to MMW bands
- Output frequency up to 110 GHz

APPLICATIONS

Bench top test set

SNA Series


DESCRIPTION

SNA series of scalar network extenders combine high performance millimeterwave amplifiers, passive or active multipliers, filters, Faraday isolators, direct reading attenuator, high directivity directional couplers and high sensitive detectors to extend the low frequency scalar network analyzers, such as HP 8756A or HP 8757A to low cost millimeterwave scalar network analyzers. The scalar network analyzers cover the output frequency range of 26.5 to 110 GHz in six waveguide bands. The typical input power required for these standard units are + 10.0 dBm while the dynamic ranges of these extenders for insertion loss are 30 to 50 dB and return loss is 20 dB to 40 dB. The SMA (F) coaxial connector is equipped for input and standard waveguide for output interface.

STANDARD PRODUCT SPECIFICATIONS

Model Number	Output Freq. (GHz)	Multiplying Factor	Input Freq. (GHz)	Dynamic Range (IL, dB)	Dynamic Range (RL, dB)	Output Waveguide	Bias (V/mA)
SNA-280208-01	26.5 - 40.0	X 2	13.25 - 20.0	40.0	30.0	WR-28	+8 / 200
SNA-280220-01	26.5 - 40.0	X 2	13.25 - 20.0	50.0	40.0	WR-28	+8 / 600
SNA-220305-01	33.0 - 50.0	X 3	11.00-16.67	35.0	25.0	WR-22	+8 / 200
SNA-190305-01	40.0 - 60.0	X 3	13.33 - 20.0	35.0	25.0	WR-19	+8 / 200
SNA-150405-01	50.0 - 75.0	X 4	12.5 - 18.75	35.0	25.0	WR-15	+8 / 600
SNA-120600-01	60.0 - 90.0	X 6	10.0 - 15.00	30.0	20.0	WR-12	+8 / 600
SNA-100600-01	75.0- 110.0	X 6	12.5 - 18.33	30.0	20.0	WR-10	+8 / 600
Temperatur	e Range		0 to +50°C				

APPLICATION BLOCK DIAGRAM

FEATURES

- Full waveguide band operation
- Compatible with various noise figure meters
- Swept measurement capacity
- Solid-state noise sources offered
- Compact and rugged package

APPLICATIONS

- Laboratory test set
- Wafer probe station
- Receivers

SNG Series

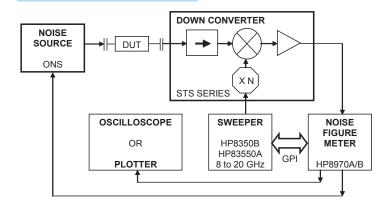
DESCRIPTION

The **SNG** Series of noise figure and gain test sets are configured to provide automatic noise and gain measurement of amplifiers or receivers in the frequency range of 26.5 to 140 GHz in seven overlapping waveguide bands. These test sets combine high performance broadband solid state noise sources with full waveguide band down converters (**STS** Series) extending the Agilent 8970A/B noise figure meters to the millimeterwave frequency range. A signal generator with output frequencies from 8 to 20 GHz, such as an Agilent 8350B/83550A or 83751B is required by the down converter unit as an LO. A complete system block diagram is shown. The standard models have SMA (F) coaxial connectors for the LO input and IF output ports of the down converters with a standard waveguide for the DUT (Device Under Test) RF input port.

SPECIFICATIONS

Model Number	Freq. Range (GHz)	Input Freq. (GHz)	Input Power (dBm)	ENR (dB)	Dynamic Range (NF/ Gain, dB0	Output Waveguide	Bias (V/mA)
SNG-28-01	26.5 – 40.0	13.25 - 20.0	10.0	15.0		WR-28	+8 / 250
SNG-22-01	33.0 - 50.0	11.00-16.67	10.0	14.0		WR-22	+8 / 250
SNG-19-01	40.0 – 60.0	13.33 – 20.0	10.0	13.0	NF: 0 to 20	WR-19	+8 / 350
SNG-15-01	50.0 – 75.0	12.5 – 18.75	10.0	13.0		WR-15	+8 / 350
SNG-12-01	60.0 - 90.0	10.0 - 15.00	10.0	13.0	Gain: -20 to +30	WR-12	+8 / 500
SNG-10-01	75.0- 110.0	12.5 – 18.33	10.0	12.0		WR-10	+8 / 500
SNG-08-01	90.0 to 140.0	10.0 – 15.56	10.0	12.0		WR-8	+8 / 500

Note: Consult factory for other noise/gain test set configurations.


TECHNICAL NOTATION

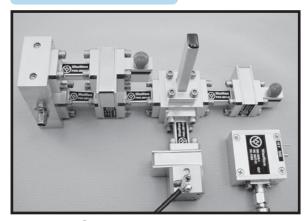
The oscilloscope, sweeper and noise figure meter are not part of the standard noise/gain test set offered. The OEM model numbers shown in the block diagram are for reference only. Models other than those shown that have similar functionality, or are from other manufacturers, can also be used.

OUTLINE

Refer to ONS data sheet for noise sources outline.

BLOCK DIAGRAM

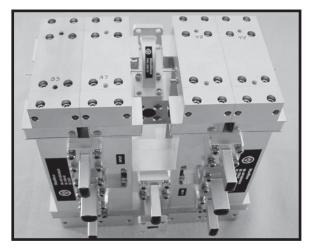
Bulletin No. SSS


FEATURES

- Custom designed
- Integrated module or bolt together solution
- High performance
- Quick delivery
- Cost effective

APPLICATIONS

- Radar
- Sensors
- Modules
- Test set


DESCRIPTION

30 GHz Plasma Detection Sensor Assembly

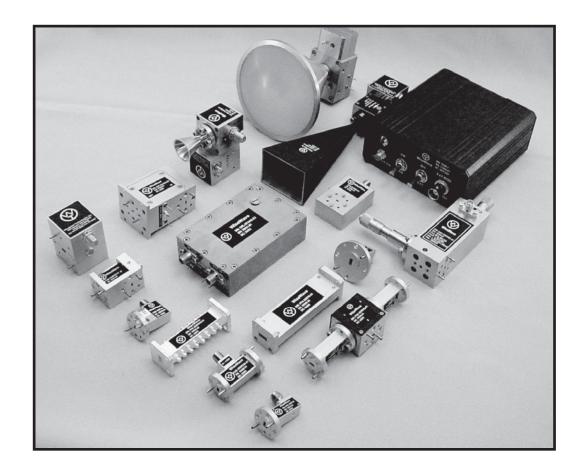
Ducommun understands customers' needs. Ducommun not only supplies the standard and custom made components and modules, but also understands the importance of providing engineering design and service to its customers.

Ducommun's self-contained, in-house components design and fabrication capacities ensured the breath of sub-assemblies offer from rapid prototyping and proof of concept to full production. **Ducommun** has produced many high performance millimeterwave band sub-assemblies for specific commercial and military system applications.

35 GHz 10 W PA Assembly

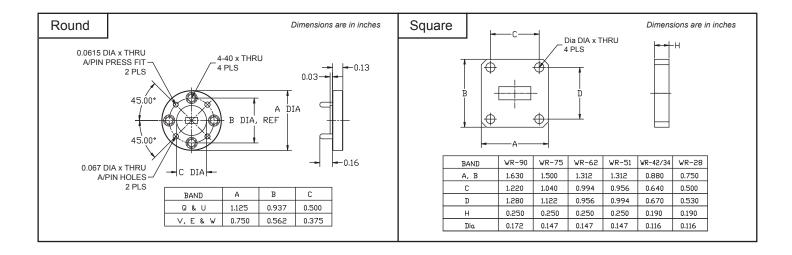
Among them, the K and Ka band directional Doppler Radar front ends are in production. More than one thousand sets have been delivered. In addition, Ducommun has delivered Ka through W band engineering prototypes for plasma detection system, automotive Radar, speed Radar, automatic test set, Radio Telescope, Missile terminal guidance, telecommunication system, etc. applications.

Ducommun is approved to be a company who can not only supply high performance catalog products, but also realize a concept into the hardware with state-of-the-art performance prototypes and cost effective volume production.


K and Ka Band Doppler Sensor Assemblies

9. Technical Reference

Rectangular Waveguide and Flange Designations	9-98
Circular Waveguide and Flange Designations	9-99
Coax Connectors	9-99
mW and dBm	9-100
Model Number Index	9-101



Rectangular Waveguide and Flange Designations

Bands	U.S.A. (EIA) (JAN)	U.K. WG I.E.C.	Operating Frequency Range (GHz)	Cut-off Frequncy (GHz)	Waveguide Inner Size (Inches)	Cover Flange* MIL-F-3922/ UG	Flange Type
Х	WR-90 RG-52/ U	WG-16 R100	8.2 to 12.4	6.56	0.900 x 0.400	53-001 UG-39/ U	Square
	WR-75 RG-346/ U	WG-17 R120	10.0 to 15.0	7.87	0.750 x 0.375	53-007 -	Square
Ku	WR-62 RG-91/ U	WG-18 R140	12.4 to 18.0	9.48	0.622 x 0.311	53-005 UG-419/ U	Square
	WR-51 RG-352/ U	WG-19 R180	15.0 to 22.0	11.57	0.510 x 0.255	70-010 -	Square
К	WR-42 RG-53/ U	WG-20 R220	18.0 to 26.5	14.05	0.420 x 0.170	54-001 UG-595/ U	Square
	WR-34 RG-53/ U	WG-21 R260	22.0 to 33.0	17.33	0.340 x 0.170	- UG-1530/ U	Square
Ka	WR-28 RG-96/ U	WG-22 R320	26.5 to 40.0	21.08	0.280 x 0.140	54-003 UG-599/ U	Square
Q (B)	WR-22 RG-97/ U	WG-23 R400	33.0 to 50.0	26.34	0.224 x 0.112	67B-006 UG-383/ U	Round
U	WR-19 RG-358/ U	WG-24 R500	40.0 to 60.0	31.36	0.188 x 0.094	67B-007 UG-383/ U-M	Round
V	WR-15 RG-98/ U	WG-25 R620	50.0 to 75.0	39.86	0.148 x 0.074	67B-008 UG-385/ U	Round
E	WR-12 RG-99/ U	WG-26 R740	60.0 to 90.0	48.35	0.122 x 0.061	67B-009 UG-387/ U	Round
W	WR-10 RG-359/ U	WG-27 R900	75.0 to 110.0	59.01	0.100 x 0.050	67B-010 UG-387/ U-M	Round
F	WR-8 RG-138/ U	WG-28 R1200	90.0 to 140.0	73.84	0.080 x 0.040	- UG-387/ U-M	Round
D	WR-6 RG-276/ U	WG-29 R1400	110.0 to170.0	90.84	0.065 x 0.0325	- UG-387/ U-M	Round

^{*}Note: The flange material is brass. The flange number is different if the material is aluminum.

Circular Waveguide and Flange Designations

Bands	Frequency	y Range (GHz)	Circular Waveguide Diameter (Inches)	Cover Flange* MIL-F-3922 UG	Flange Type
	Low	8.2 to 9.97	1.094		
Х	Medium	8.5 to 11.6	0.938	53-001 UG-39/ U	Square
	High	9.97 to 12.4	0.797	00-33/ 0	
	Low	12.4 to 15.9	0.688		
Ku	Medium	13.4 to 18.0	0.594	53-005 WG-419/U	Square
	High	15.9 to 18.0	0.500	VVO 410/0	
	Low	18.0 to 20.5	0.455		
K	Medium	20.0 to 24.5	0.396	54-001 UG-595/U	Square
	High	24.0 to 26.5	0.328	00-333/0	
	Low	26.5 to 33.0	0.315		
Ka	Medium	33.0 to 38.5	0.250	54-003 UG-599/U	Square
	High	38.5 to 40.0	0.219	00 000/0	
	Low	33.0 to 38.5	0.250		
Q (B)	Medium	38.5 to 43.0	0.219	67B-008 UG-383/ U	Round
	High	43.0 to 50.0	0.188	00 000/ 0	
	Low	40.0 to 43.0	0.210		
U	Medium	43.0 to 50.0	0.188	67B-007 UG-383/U-M	Round
	High	50.0 to 60.0	0.165	00 000/0 III	
	Low	50.0 to 58.0	0.165		
V	Medium	58.0 to 68.0	0.141	67B-008 UG-385/U	Round
	High	68.0 to 75.0	0.125	000,0	
	Low	68.0 to 75.0	0.136		
Е	Medium	66.0 to 88.0	0.125	67B-009 UG-387/U	Round
	High	88.0 to 90.0	0.094	00 00770	
W	Low	75.0 to 88.0	0.112	67B-010	Round
VV	High	88.0 to 110.0	0.094	UG-387/U-M	Rouliu
F	Low	90.0 to 115.0	0.089	-	Round
Г	High	115.0 to 140.0	0.075	UG-387/U-M	Roullu
D	Low	110.0 to 140.0	0.073	-	Round
D	High	140.0 to 160.0	0.059	UG-387/U-M	Rouliu

^{*}Note: The flange material is brass. The flange number is different if the material is aluminum.

Coax Connectors

Connector Type	Frequency Range (GHz)	Ducommun Technologies' Designations	
N	DC to 18.0	NF - Female Connector	NM - Male Connector
7 mm or APC-7	DC to 18.0	7F - Female Connector	7M - Male Connector
SMA	DC to 18.0	SF - Female Connector	SM - Male Connector
Super SMA	DC to 27.0	SF - Female Connector	SM - Male Connector
3.5 mm	DC to 26.5	3F - Female Connector	3M - Male Connector
2.92 mm or K	DC to 40.0	KF - Female Connector	KM - Male Connector
2.4 mm	DC to 50.0	2F - Female Connector	2M - Male Connector
1.85 mm or V	DC to 65.0	VF - Female Connector	VM - Male Connector
1 mm	DC to 110.0	1F - Female Connector	1M - Male Connector

Return Loss, VSWR, Reflection Coefficient and Mis-match Loss

Return Loss (dB)	VSWR	Reflection Coef- ficient	Mismatch Loss (dB)	Return Loss (dB)	VSWR	Reflection Coefficient	Mismatch Loss (dB)
1	17.39	0.89	6.87	21	1.20	0.09	0.03
2	8.72	0.79	4.33	22	1.17	0.08	0.03
3	5.85	0.71	3.02	23	1.15	0.07	0.02
4	4.42	0.63	2.20	24	1.13	0.06	0.02
5	3.57	0.56	1.65	25	1.12	0.06	0.01
6	3.01	0.50	1.26	26	1.11	0.05	0.01
7	2.61	0.45	0.97	27	1.09	0.04	0.01
8	2.32	0.40	0.75	28	1.08	0.04	0.01
9	2.10	0.35	0.58	29	1.07	0.04	0.01
10	1.92	0.32	0.46	30	1.07	0.03	0.00
11	1.78	0.28	0.36	31	1.06	0.03	0.00
12	1.67	0.25	0.28	32	1.05	0.03	0.00
13	1.58	0.22	0.22	33	1.05	0.02	0.00
14	1.50	0.20	0.18	34	1.04	0.02	0.00
15	1.43	0.18	0.14	35	1.04	0.02	0.00
16	1.38	0.16	0.11	36	1.03	0.02	0.00
17	1.33	0.14	0.09	37	1.03	0.01	0.00
18	1.29	0.13	0.07	38	1.03	0.01	0.00
19	1.25	0.11	0.06	39	1.02	0.01	0.00
20	1.22	0.10	0.04	40	1.02	0.01	0.00

mW and dBm

	-ID	10/	-ID	10/	-ID
mW	dBm	mW	dBm	mW	dBm
0.001	-30.0	1	0.0	30	14.8
0.005	-23.0	2	3.0	40	16.0
0.01	-20.0	3	4.8	50	17.0
0.02	-17.0	4	6.0	60	17.8
0.03	-15.2	5	7.0	70	18.5
0.04	-14.0	6	7.8	80	19.0
0.05	-13.0	7	8.5	90	19.5
0.06	-12.2	8	9.0	100	20.0
0.07	-11.5	9	9.5	200	23.0
0.08	-11.0	10	10.0	300	24.8
0.09	-10.5	11	10.4	400	26.0
0.1	-10.0	12	10.8	500	27.0
0.2	-7.0	13	11.1	600	27.8
0.3	-5.2	14	11.5	700	28.5
0.4	-4.0	15	11.8	800	29.0
0.5	-3.0	16	12.0	900	29.5
0.6	-2.2	17	12.3	1,000	30.0
0.7	-1.5	18	12.6	10,000	40.0
0.8	-1.0	19	12.8	100,000	50.0
0.9	-0.5	20	13.0	1,000,000	60.0

Model Number Index

M/N	Description	Page	M/N	Description	Page
ACH	Circular Horn Antennas	2-8	OGF	Full Band Gunn Oscillators	5-42
AGA	GPS Antennas	2-10	OGI	Injection Locked Gunn Oscillators	5-48
AGP	General Purpose Amplifiers	1-4	OGL	Low Cost Gunn Oscillators	5-39
AHP	High Power Amplifiers	1-3	OGM	Mechanically Tuned Gunn Oscillators	5-41
ALC	Lens Corrected Antennas	2-9	OGR	Gunn Oscillator Bias Regulators	5-46
ALN	Low Noise Amplifiers	1-2	OGV	Varactor Tuned Gunn Oscillators	5-43
ARH	Rectangular Horn Antennas	2-8	OMR	Gunn Oscillator Bias Modulators	5-46
ASD	Custom Built Antennas	2-11	ONS	Solid State Noise Source	5-44
CAE	Electrical Controlled Attenuators	3-17	OPL	Phase Locked Oscillators	5-49
CAF	Waveguide Fixed Attenuators	3-18	PCC	Crossguide Couplers	7-63
CAL	Waveguide Level Setting Attenuators	3-18	PCM	Multi-hole Directional Couplers	7-62
CAR	Direct Reading Attenuators	3-20	PCT	Magic Tees	7-64
CPD	SPDT PIN Diode Switches	3-14	PDC	Waveguide Diplexers	7-69
CPL	Variable Phase Shifters	3-19	PFB	Waveguide Bandpass Filters	7-66
CPM	PIN Diode Switches	3-14	PFH	Waveguide Highpass Filters	7-68
CPS	SPST PIN Diode Switches	3-14	PFL	Waveguide Lowpass Filters	7-67
FAS	Amplitude Detectors (Waveguide)	4-24	PPD	Coaxial Power Dividers	7-65
FCC	Connectorized Circulators	6-55	PRC	Rectangular to Circular Transitions	7-70
FCD	Drop-in Circulators	6-54	PTC	Waveguide to Coax Adapters	7-72
FCF	Full Band Junction Circulators	6-58	PTW	Tapered Waveguide Transitions	7-70
FCI	Iso-adapters (Circulators)	6-56	PWA	Waveguide Flange Adapters	7-71
FCW	Narrow Band Junction Circulators	6-57	PWK	Waveguide Bulkhead Adapters	7-71
FDB	Balanced Mixers	4-29	PWE	Waveguide E Bend Sections	7-73
FDH	Harmonic Mixers	4-28	PWH	Waveguide H Bend Sections	7-73
FDS	Subharmonically Pumped Mixers	4-32	PWM	Waveguide Termination Loads	7-73
FFF	Faraday Isolators	6-59	PWS	Waveguide Straight Sections	7-73
FIC	Connectorized Isolators	6-55	PWT	Waveguide Twist Sections	7-73
FID	Drop-in Isolators	6-54	SFE	Frequency Extenders	8-92
FIF	Full Band Junction Isolators	6-58	SMD	Motion Detector Modules	8-80
FII	Iso-adapters (Isolators)	6-56	SNA	Network Analyzer Extenders	8-93
FIW	Narrow Band Junction Isolators	6-57	SNG	Noise Figure and Gain Test Set	8-94
FMA	Active Frequency Multipliers	4-26	SP4T	PIN Switches	3-15
FMP	Passive Frequency Multipliers	4-27	SP10T	PIN Switches	3-15
FPB	I-Q Mixers (Phase Detectors)	4-25	SRF	Doppler Sensor Heads	8-81
FSS	Single Side Band Modulators	4-34	SRR	Ranging Sensor Heads	8-83
FUB	Balanced Up-converters	4-31	SRU	Doppler Ranging Sensor Heads	8-88
FUS	Subharmonically Pumped Up-converters	4-33	SSA	Radar Target Simulators	8-91
OFD	Dielectric Resonator Oscillators	5-38	SSS	Sub-assemblies	8-95
OGB	Bias Tuned Gunn Oscillators	5-40	WTJ	Waveguide Jack	7-76

Ducommun Incorporated Advanced Systems Group 23301 Wilmington Avenue Carson, CA 90745

P 310.513.7200

F 310.513.0206

www.ducommun.com rfsales@ducommun.com